
CS230

Indian Institute of Technology (IIT-Bombay)

AUTUMN Semester, 2025

COMPUTER SCIENCE AND ENGINEERING

CS230: Digital Logic Design + Computer Architecture

Quiz I

Full Marks: 15

Time allowed: 0.5 hours

1. Easy: Choose the correct answer(s) – one or multiple can be correct: An n-bit Balanced
Boolean Function is a function with n-bit inputs and 1-bit output which has an equal number
of 0’s and 1’s in the “output” column of its truth table. Which of the following is (are) true for
such an n-bit Balanced Boolean Function?

1. The K-map will have many don’t cares.

2. The K-map will have 2n−1 0’s.

3. The complement of such a function is also a balanced function.

4. The K-map will have 2n−2 0’s.

Give proper justification to your answer(s). No marks will be given without proper justi-
fication. (2 marks)

Solution: 2,3. There are a total 2n rows in the truth table, and, therefore, same number
of cells in the K-map. Half of them (2n−1) are 0’s and the rest are 1’s. Therefore, 2 is
correct. Also, the complement of a function changes the 0’s to 1’s (in the output column)
and vice versa. So 3 is also correct.

Grading Policy: 0.5 for choosing each correct option + 0.5 for each correct justifi-
cation. Also, if you consider that there are don’t cares and, based on that argue 2 as
conditionally true, you shall get marks.

Siddesh+Neel

2. Medium: You have to make a 2n : 1 MUX (A multiplexer with 2n inputs and 1 output) using
only 2 : 1 MUXes. The number of 2 : 1 MUXes needed is (only one answer is correct):

1. n− 1, 2 : 1 MUXes will be needed .

2. 2n−1, 2 : 1 MUXes will be needed.

3. 2n, 2 : 1 MUXes will be needed.

4. 2n − 1, 2 : 1 MUXes will be needed.



– 2 – CS230

Give clear and proper justification to your answer(s). No marks will be given without
proper justification. (3 marks)

Solution: 4. First, observe that a 2n : 1 MUX will be a binary tree of 2 : 1 MUXes
(see an example of 8 : 1 MUX from Tutorial 1). There will be log2(2

n) = n layers in
this tree. The first layer (input) will have 2n−1 2 : 1 MUXes. The second layer will have
2n−2 2 : 1 MUXes, and so on. Finally, the nth layer (output) will have only one 2 : 1
MUX. Therefore, the total number of 2 : 1 MUXes needed is 1+2+22+ · · ·+2n−1 = 2n−1.

Grading Policy: 1 for choosing correct option. 2 for clear and proper justification.

Aritra+Shivam

3. Self-Correcting Counter (Easy): A self-correcting counter is a sequential counter designed
so that:

• It follows a desired sequence of states (for example, a custom binary sequence).

• If due to noise, power-up uncertainty, or fault, the counter enters an unused/invalid state
(a state which is not a part of the binary sequence of the counter), the logic guarantees
that on the very next clock cycle, the counter will automatically transition into a valid
state of the sequence.

Construct a counter for the following binary sequence using T flip-flops: 000 → 010 → 111 →
100 → 011. However, the counter must be self-correcting, that is, from an illegal state it should
always come back to the 000 state in the next clock cycle. Also, from the last valid state 011,
the counter must come back to 000. The counter is a 3-bit counter.

(a) Construct the state-table clearly showing the present states and next states. (2 marks)

(b) Derive the equations for the T-flip-flop inputs by clearly showing and solving K-maps.
Your expression should only have NOT, 2-input AND and 2-input ORs. The expressions
should be minimal in terms of gate count. (3 marks)

Solution: The state-transition table is shown in Table 3. There are 3-bit present states
Q2 Q1 Q0 and 3-bit next states Q+

2 Q+
1 Q+

0 . Each illegal state transits to 000 in the next
state. The T-flip-flop inputs can be derived as Ti = Qi ⊕Q+

i with 0 ≤ i ≤ 2. The (three)
K-maps will have inputs (Q2 Q1 Q0) and outputs as T2, T1, and T0. The final equations
are as follows:

T0 = Q0 + Q1.Q2 + Q2.Q1

T2 = Q1.Q0 + Q2.Q1

T1 = Q1.Q0 + Q1.Q0 + Q2.Q0



– 3 – CS230

(Alternative)

T1 = Q1.Q0 + Q1.Q0 + Q2.Q1

Grading Policy: (a) Deduct 1 mark if upto one entry in the table is wrong. Else, either
give 0 or 2. b) Each K-map 0.5 + each expression 0.5.
Shoaib+Jayshree

Present State (Q2 Q1 Q0) Next State (Q2+ Q1+ Q0+) T2 T1 T0

000 010 0 1 0
001 000 0 0 1
010 111 1 0 1
011 000 0 1 1
100 011 1 1 1
101 000 1 0 1
110 000 1 1 0
111 100 0 1 1

4. Majority Function (a bit tricky) A 3-input majority function/majority gate is a function
which evaluates to 1(0) only if at least two of the 3 input bits are 1(0).

(a) Derive the (minimized) logic expression for the majority function/gate with inputs
(x1, x2, x3). (1 mark)

(b) Prove/disprove with proper logic: Majority gate/function is a universal gate. “Proving”
means: you have to show that all the basic gates (AND, OR, NOT) or at least one of the
universal gates (NAND, NOR) can be constructed with a majority gate or a combination
of majority gates. Disproving” means: you have to show that at least one of the
basic gates (AND, OR, NOT) or none of the universal gates (NAND, NOR) can be
constructed using a majority gate, or a combination of such majority gates. (4 marks)

Solution: The truth table for 3-input majority gate is given in Table 1. Solving the
K-map gives: Majority(x1, x2, x3) = x1x2 + x2x3 + x1x3.

Observe that you cannot construct a NOT gate using majority gates. To under-
stand why, first consider a single majority gate Maj(x1, x2, x3). Without loss of generality,
let us consider that we want to invert the input x1. Observe that, if we keep (x2, x3) fixed
to some value (00, or 01, or 10, or 11), and change x1 from 0 → 1, the Maj(x1, x2, x3)
output always changes from 0 → 1. In short, for x1 going from 0 → 1, a transition of 1 → 0
is never possible. Next consider a network of such majority gates in which x1 appears in



– 4 – CS230

Figure 1: Question 3 (K-maps)

many gates as inputs. Since none of the gate outputs can transit 1 → 0 for an input transi-
tion of x1 : 0 → 1, it is impossible to invert x1, even using such a network of majority gates.
Therefore, it is not possible to implement a NOT gate, and a majority gate is not universal.

Grading Policy: (a) Give 1 only if the correct expression is derived. Else 0. b)
Give 2 if they have identified that making NOT is hard. Give 2 marks if they somehow
identify that inversion is not possible with majority gate (even if they go for NAND or
NOR). Give 4, only if they can properly justify as given in the answer key.

Enanko+Mrityunjay+Iqbal



– 5 – CS230

x1 x2 x3 Maj(x1, x2, x3)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Table 1: Truth table of 3-input majority function

Figure 2: Question 4 (K-maps)


