
CS230

Indian Institute of Technology (IIT-Bombay)

AUTUMN Semester, 2025

COMPUTER SCIENCE AND ENGINEERING

CS230: Digital Logic Design and Computer Architecture

Tutorial - I

Full Marks: 0

Time allowed: ∞ hours

1. Determine the canonical sum-of-products representation of the following functions:

(a) f(a, b, c) = c′ + (a+ b′)(a′ + b)

(b) f(a, b, c) = a′ + (ab+ a′c′)′

(c) f(a, b, c) = (a+ b)(a′ + c) + bc′

Solution:

(a) f(a, b, c) =
∑

m(0, 1, 2, 4, 6, 7)

(b) f(a, b, c) =
∑

m(0, 1, 2, 3, 4, 5)

(c) f(a, b, c) =
∑

m(1, 2, 3, 5, 6, 7)

– 2 – CS230

2. Consider the Karnaugh map given below in fig 1, where X represents “don’t care” and blank represents 0.

Figure 1: K-Map of question 2

Assume for all inputs (a, b, c, d), the respective complements (ā, b̄, c̄, d̄) are also available. The above logic is
implemented using 2-input NOR gates only. The minimum number of gates required is

Solution

The Function is XOR, and 3 NOR gates are required because note that (ā, b̄, c̄, d̄) are also available.

Steps:
After K-map reduction: a⊕ c = ca′ + c′a
Consider POS form: (thanks Vedant for this approach)

c⊕ a = (c+ a).(c+ a)

Say,NOR(a, c) = (c+ a)

= c.a

keeping this in mind,

c⊕ a = (c+ a). (c+ a)

= (c.a). (c.a)

With compliments given, (c.a) −−− > NOR 1

(c.a) −−− > NOR 2

then overall expression, (c.a). (c.a) −−− > NOR 3

– 3 – CS230

3. Show that f(X,Y, Z) = XY ′Z ′ +X ′Y + Y Z ′ is a universal operation.

Solution:

f(X,Y, Z) = XY ′Z ′ +X ′Y + Y Z ′

= Z ′(XY ′ + Y) +X ′Y
= Z ′(X + Y) +X ′Y
= X ′Y + Y Z ′ + Z ′X [using consensus theorem]
= X ′Y +XZ ′

f(X, 1, Z) = X ′ +XZ ′

= X ′ + Z ′

= (XZ)′

We have produced a NAND gate, which is a universal operation / functionally complete.

4. Design an 8× 1 multiplexer using a combination of 2× 1 multiplexers.

solution

Figure 2: 8 x 1 mux from 2 x 1

– 4 – CS230

5. Find the simplest function h(A,B,C,D) that will make the function

f = A′BC + (AC +B)D + h(A,B,C,D)

self-dual.
Hint: The dual of a Boolean function can be obtained by replacing all the ANDs with ORs and vice versa.
The constant terms are replaced with their respective complements. Boolean function can be self-dual if the
truth table contains the same number of 0’s and 1’s, and none of the minterm pairs are mutually exclusive
(that is, no two minterms are complements to each other).

Solution:

For this question, first, construct the K-Map for the already given minterms of f . The K-Map is presented
in Figure 3. From the given minterms of f (except those from h), we can fill in the 1’s in the K-Map.
However, since the function is self-dual, we can also find out the locations of the 0’s from the given 1’s. This
is because, for a self-dual function if x0x1 · · ·xn is a minterm, then x0 + x1 + x2 + · · ·xn must also be a
maxterm. Therefore, if we have a 1 in a cell, then we must have a 0 in a cell whose code is the complement
to the 1-cell. With this observation, we can fill in 6 0’s. Now, there are four cells which can be filled. By the
property of self-dual, two of them must be filled in with 1’s. For the given K-Map, we observe that either
(0001, 0011) or (1110, 1100) must be 1. Therefore, we can have two possible minimal forms for f (i.e. two
minimal h), given as:

f = A′BC +ACD +BD +A′D

and
f = AB +BD +A′BC +ACD

0 0

0 1 1 1

1 1

0 0 1 0

AB
CD

00

01

11

10

00 01 11 10

Figure 3: K-Map for question 5

– 5 – CS230

6. You are given three-input logic gates, each realizing the function g(x, y, z) = x⊕ yz. Use this function as a
block to implement the following function

f = (a+ b)c+ ab′.

Prove/disprove that by using these gates only, you can realize any Boolean function. Show all your steps.

Solution:

f = (a+ b)c+ ab′

f = ac+ bc+ ab′ [using consensus theorem]
f = ab′ + bc

whereas,
g(x, y, z) = x⊕ yz
g(x, 1, z) = x⊕ z
g(1, y, z) = (yz)′

g(0, y, z) = yz

using the new derivations from g,
g(0, b, c) = bc.......................(1)
g(1, y, 1) = y′

g(0, a, g(1, b, 1)) = ab′..........(2)
g(1, g(1, y, 1), g(1, z, 1)) = y + z [add operation]...(3)
Using (1), (2) with the help of (3),
g(1, g[1, g(0, a, g(1, b, 1)), 1], g[1, g(0, b, c), 1]) = ab′ + bc

– 6 – CS230

7. Design a circuit that takes in a 3-bit signed (2’s complement) number X and produces an output
Z = X2 + 2X + 1

solution

Z = (X + 1)2

X is a 3-bit two’s complements number (X2(MSB/ Sign), then X1,X0). The output is always non-negative
and fits in 5 bits [0, 16]

X (bin) X (dec) Z = (X + 1)2 z4z3z2z1z0
100 -4 9 01001
101 -3 4 00100
110 -2 1 00001
111 -1 0 00000
000 0 1 00001
001 1 4 00100
010 2 9 01001
011 3 16 10000

Table 1: Truth table for Z = (X + 1)2 with 3-bit signed input X

using K-Maps, we can derive
z4 = x2 x1 x0,

z3 = x0 (x1 ⊕ x2),

z2 = x1 x0,

z1 = 0,

z0 = x0.

– 7 – CS230

8. Design a 1-bit comparator that takes in a bit X and a bit Y and outputs X < Y,X > Y,X = Y . Use a
single 2-to-4 decoder and 1 single OR gate

Solution:

There are 4 possible input combinations:

X Y X > Y X < Y X = Y
0 0 0 0 1
0 1 0 1 0
1 0 1 0 0
1 1 0 0 1

X > Y = AB̄
X < Y = ĀB
X = Y = ĀB̄ +AB̄

A

B AB

AB
AB
AB

A>B
A<B

2 X 4

Figure 4

– 8 – CS230

9. A new flip-flop, called MN flip-flop, is constructed from a JK flip-flop as follows:

J = M, K = N ⊕M

(a) Derive the state-transition table and excitation table for this new flip-flop (b) Derive the characteristic
equation (c) Construct a D flip-flop from this new flip-flop

Solution:

(a) State-Transition Table and Excitation Table

JK Flip-Flop Characteristic Table

J K Qt+1

0 0 Qt

0 1 0
1 0 1
1 1 Qt

MN Flip-Flop State Transition Table

Using:
J = M, K = M ⊕N

M N Qt J K Qt+1

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 0
1 0 0 1 1 1
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 0 1

Excitation Table

Qt Qt+1 Required (M, N)
0 0 (0,0), (0,1)
0 1 (1,0), (1,1)
1 0 (0,1), (1,0)
1 1 (0,0), (1,1)

(b) Characteristic Equation
Qt\MN 00 01 11 10

0 0 0 1 1
1 1 0 1 0

Minterms where Qt+1 = 1:

• Qt = 0,MN = 11 ⇒ M ·N ·Qt

• Qt = 0,MN = 10 ⇒ M ·N ·Qt

• Qt = 1,MN = 00 ⇒ M ·N ·Qt

• Qt = 1,MN = 11 ⇒ M ·N ·Qt

– 9 – CS230

From the state transition table, we derive the characteristic equation:

Express as sum of products: Qt+1 = (M ·N ·Qt) + (M ·N ·Qt) + (M ·N ·Qt) + (M ·N ·Qt)

Simplify: Qt+1 = M N Qt +M N Qt +MN(Qt +Qt)

Since Qt +Qt = 1 :

Qt+1 = M N Qt +M N Qt +MN

Alternatively, Qt+1 = MN +N(MQt +MQt)

(c) Construct a D Flip-Flop from MN Flip-Flop

We want the MN flip-flop to behave like a D flip-flop:

Q+ = D

Choose:
M = D, N = Q

Then:
J = D, K = D ⊕Q

This results in the desired D flip-flop behavior.

– 10 – CS230

10. Construct a counter for the following sequence using T flip-flops: 000 → 010 → 111 → 100 → 011. (a) Draw
the state-table (b) Construct the next-state map (c) Derive the inputs of the T flip-flops (d) Draw the final
circuit

Solution:

(a) State Table

Present State (Q2Q1Q0) Next State (Q+
2 Q

+
1 Q

+
0)

000 010
010 111
111 100
100 011
011 000

—

(b) Next-State Map

Q2 Q1 Q0 Q+
2 Q+

1 Q+
0

0 0 0 0 1 0
0 1 0 1 1 1
1 1 1 1 0 0
1 0 0 0 1 1
0 1 1 0 0 0

—

(c) Derive the T Flip-Flop Inputs

Recall the excitation table for T flip-flops:

Q Q+ T
0 0 0
0 1 1
1 0 1
1 1 0

Thus,
T = Q⊕Q+

Calculate the T inputs for each flip-flop:

Q2 Q1 Q0 Q+
2 Q+

1 Q+
0 T2 = Q2 ⊕Q+

2 T1 = Q1 ⊕Q+
1 T0 = Q0 ⊕Q+

0

0 0 0 0 1 0 0 1 0
0 1 0 1 1 1 1 0 1
1 1 1 1 0 0 0 1 1
1 0 0 0 1 1 1 1 1
0 1 1 0 0 0 0 1 1

—

Simplify the T Inputs

– 11 – CS230

For T2:

T2 =
∑

m(2, 4)

Where:

m2 = Q′
2Q1Q

′
0, m4 = Q2Q

′
1Q

′
0

Thus,

T2 = Q′
2Q1Q

′
0 +Q2Q

′
1Q

′
0

—

For T1: T1 is 1 for all states except at 010.

Thus,

T1 = Q′
2Q1Q′

0 = Q2 +Q′
1 +Q0

—

For T0: T0 is 0 only at 000, so

T0 = Q2 +Q1 +Q0

—

(d) Final Circuit

The final circuit consists of three T flip-flops with inputs:


T2 = Q′

2Q1Q
′
0 +Q2Q

′
1Q

′
0

T1 = Q2 +Q′
1 +Q0

T0 = Q2 +Q1 +Q0

Logic gates needed:

• NOT gates for Q′
2, Q

′
1, Q

′
0

• AND gates for the two terms in T2

• OR gates to combine terms in T2, and to generate T1 and T0

• Connect Ti inputs to corresponding T flip-flops Qi

All flip-flops are triggered by the common clock signal.

– 12 – CS230

11. A sequential circuit has one flip flop Q, two inputs X and Y and one output S. The circuit consists of a full
subtractor circuit connected to a D flip flop as shown in Figure 5 below. Derive the state table and state
diagram for the sequential circuit.

FULL
Subtractor

Figure 5

Solution

total 8 rows

Q (Present State) x y Bout = Q(t+1) S = x ⊕ y ⊕ Q
0 0 0 0 0
0 0 1 1 1
0 1 0 0 1
0 1 1 0 0
1 0 0 1 1
1 0 1 1 0
1 1 0 0 0
1 1 1 1 1

Table 2: State Table of Sequential Circuit with Full Subtractor

A(Q=0)start B(Q=1)

00/0, 10/1, 11/0

01/1

00/1, 01/0, 11/1

10/0

– 13 – CS230

12. In this question we construct a serial BCD to Excess-3 code converter from serial input. In other words, the
input will be provided, and the output will be generated one bit at a time. Excess-3 code can be generated
by adding (0011)2 with the BCD code. Therefore, you need to consider 4 bits of input at a time as a valid
BCD code. The expected input and outputs provided in Figure 6. Observe that the inputs will be provided
from LSB to MSB and the outputs will be generated in the same manner (more precisely, the LSB of the
input will be processed first and the LSB of the output will be generated first). So you have to consider each
entry in the table from right to left while processing.

• In this question you will be generating a circuit for this state machine. First generate the state-transition
graph and the state-transition table. Hint: The state-transition graph will have the states as the nodes
and transitions of the form input/output as the links. The number of states can be quite large in this
case. To keep the number of states low, we use some tricks.

– Observation 1: Since the input is of 4 bits, you need to transit through 4 states for each input.

– Observation 2: Let St be any state processing the i-th bit of input for some string. It will have
two possible transitions out of it for xi = 0 and xi = 1. Observe (from the table) that, for any bit
location i, the output yi = xi or yi = xi for xi ∈ {0, 1}. In other words, the two transitions from
any given state will be either (0/1), (1/0) or (0/0), (1/1). There will be no other transitions,
such as, (0/1), (1/1).

– Observation 3: There can be total 16 possible states. But many of these states will be equivalent
and, therefore, can be merged together.

– Trick 1: There will some state transitions which are impossible. Find them out and add dummy
transitions for them keeping observation 2 in mind.

– Trick 2: The initial state S0 will also be the final state.

– Trick 3: Eliminate the equivalent states. Two states Si and Sj are equivalent if and only if for
every possible input sequence, the same output sequence is produced, regardless of whether Si

or Sj is the starting state. This much should be sufficient for you to solve the problem.

(b) Perform the state assignment using binary encoding. If you have any unused state, use it as don’t care.

Figure 6: BCD to Excess-3 Code Converter

– 14 – CS230

solution

Figure 7: State Table

Figure 8: Minimizing State Table

– 15 – CS230

Figure 9: Minimized State Table

– 16 – CS230

13. Design a circuit that detects the signal 1010 or 101 in a sequence of bits. For example, when given a sequence
of 101011011110001 as an input, the output has to be 001100010000001. Use any flip-flop possible.

solution

Defining the states as follows:

State Encoding (MN)
A 00
B 01
C 11
D 10

The state transition table is as follows:

M N x M N z
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 0 1 0
1 1 0 0 0 0
1 1 1 1 0 1
1 0 0 1 1 1
1 0 1 0 1 0

M = M ′Nx′ +MNx+MN ′x′

N = M ′x+MN ′

z = MN ′X ′ +MNX

– 17 – CS230

14. Design the circuit for the following finite state machine with inputs X and Y. Define a method to represent
the states in the circuit

A
B

Z=1

C

D

Reset

X=0

X=1

X=0

X=0, Y=1 X=1

X=1
Y=1

Y=0

X = 0, Y = 0

solution

This can be solved with Karnaugh maps with the data

Considering the states as follows:

State Encoding (MN)
A 00
B 01
C 11
D 10

The state transition table is as follows:

Previous State X Y Next State Z
A 0 0 A 0
A 0 1 A 0
A 1 0 C 0
A 1 1 C 0
B 0 0 A 0
B 0 1 A 0
B 1 0 B 1
B 1 1 B 1
C 0 0 A 0
C 0 1 B 1
C 1 0 A 0
C 1 1 B 1
D 0 0 A 0
D 0 1 B 1
D 1 0 B 1
D 1 1 B 1

– 18 – CS230

or using encoding way

MN X Y M+N+ Z
00 0 0 00 0
00 0 1 00 0
00 1 0 11 0
00 1 1 11 0
01 0 0 00 0
01 0 1 00 0
01 1 0 01 1
01 1 1 01 1
11 0 0 00 0
11 0 1 00 0
11 1 0 01 1
11 1 1 01 1
10 0 0 00 0
10 0 1 01 1
10 1 0 01 1
10 1 1 01 1

Table 3: State transition/output table

Using two D Flip Flops, one for M+ and another for N+. The K-Maps for M+, N+, z is given in the fig- 10

K-map for M+ K-map for N+ K-map for z

Figure 10: K-Maps for M+, N+, z

Using the K-Maps, we get,

M+ = M ′N ′X

N+ = M ′X +MY +MN ′X

Z = MY + (M ⊕N)X

The final circuit Diagram looks like this

– 19 – CS230

Figure 11: Final circuit

