CS230

Indian Institute of Technology (II'T-Bombay)

AUTUMN Semester, 2025
COMPUTER SCIENCE AND ENGINEERING

CS230: Digital Logic Design and Computer Architecture
Tutorial - III

Full Marks: 0
Time allowed: oo hours

1. Consider a processor with 128 registers and an instruction set of size 20. Each instruction has five distinct
fields, namely, opcode, two source register identifiers, one destination register identifier, and a sixteen-bit
immediate value. Each instruction must be stored in memory in a byte-aligned fashion. If a program has
250 instructions, the amount of memory (in bytes) consumed by the program text is

Solution:

log2128 = 7, so 7 bits to address registers

log220 =~ 5, so 5 bits to address opcode

So in total, 5+ 7+ 7+ 7+ 16 = 42bits, considering 16 bit immediate field

Since it is byte-aligned, the size of an instruction must be a multiple of 8, so we pad 6 bits to make it 48
bits or 6 bytes.

So 250 instructions require, 250 * 6 =1500 bytes

2. Assuming the system has 32-bit integers, answer the following questions.
Put the byte with the lowest address on the left (and the byte with the highest address on the right)

Write the decimal number 13 in Binary (Base-2) as a 32-bit Big Endian Int

Write the decimal number 13 in Hexadecimal (Base-16) as a 32-bit Big Endian Int
Write the decimal number 13 in Hexadecimal (Base-16) as a 32-bit Little Endian Int
Write the decimal number 13 in Hexadecimal (Base-16) as a 32-bit Little Endian Int

Solution :

00000000 00000000 00000000 00001101
0x 00 00 00 0D
00001101 00000000 00000000 00000000
0x 0D 00 00 00

-2~ CS230

3. For the following, assume that values A, B, and C reside in memory. Also assume that instruction operation
codes are represented in 8 bits, memory addresses are 64 bits, register addresses are 6 bits and and data
values are 32-bit integers.

Write down how many addresses, or names, appear in each instruction for the code to compute C = A+ B,
and what is the total code size for each of the following Instruction Set Architectures?

e Stack

e Accumulator

o Register-Memory

e Register (load-store)

Solution :

H Stack Accumulator Register-Memory Register Load-Store H

Push A Load A Load R1, A Load R1, A

Push B Add B Add R3, R1, B Load R2, B
Add Store C Store R3, C Add R3, R1, R2

Pop C Store R3, C

Arch. type | Stack | Accumulator | Register (register-memory) | Register (load-store)
Addresses 3 3 7 (3 mem. + 4 reg.) 9 (3 mem. + 6 reg.)
Code size 224 bits 216 bits 240 bits 260 bits

4. We have 32-bit ISAs, 64-bit ISAs, well, there are also 16-bit ISAs. It’s been two decades since the use of
64-bit ISAs.

a) What does 16-bit/32-bit/64-bit mean here?
b) Why not a leap towards 128-bit ISA? Yes/No? Give reasons.

Solution:

a) Size of register

b) Recall: How is memory addressed?

232

e 32-bit system can address bytes of memory = 4 Gigabytes (GB)

In mid-2000s(yeah those white computers!), this became a challenge
64-bit system can address 264 bytes of memory = 16 Exabytes(EB)
16 Exabytes = 18.4 million Terabytes - you can access astronomical sizes of RAMs

e S0, moving to 128-bit ISA doesn’t make any sense, when 64-bit is a sweet spot

-3 - CS230

5. The value represented by the hexadecimal number 4B45 5942 4F41 5244 is to be stored in an aligned 64-bit
double word. The memory is byte-addressed.
a) Write the value to be stored using Big Endian byte order.
b) Write the value to be stored using Little Endian byte order.

¢) What are the hexadecimal values of all misaligned 2-byte words that can be read from the given 64-bit
double word when stored in Big Endian byte order?

d) What are the hexadecimal values of all misaligned 4-byte words that can be read from the given 64-bit
double word when stored in Little Endian byte order?
Solution:

a) In Big Endian, the most significant byte (4B) is stored at the lowest memory address. The bytes
are stored in the order they are read.

Memory Address Offset | Hex Value
+0 4B
+1 45
+2 59
+3 42
+4 4F
+5 41
+6 52
+7 44

b) In Little Endian, the least significant byte (44) is stored at the lowest memory address. The byte
order is reversed.

Memory Address Offset | Hex Value
+0 44
+1 52
+2 41
+3 4F
+4 42
+5 59
+6 45
+7 4B

c) A 2-byte word is misaligned if its starting address is odd, ie, not divisible by 2(offsets 1, 3, 5).
We read the bytes in the order they appear in the Big Endian storage.
Start at offset +1: Reads bytes at (41, +2) - 45 59
Start at offset +3: Reads bytes at (+3, +4) - 42 4F
Start at offset +5: Reads bytes at (+5, +6) - 41 52

The hexadecimal values of the misaligned 2-byte words are 4559, 424F, and 4152

d) A 4-byte word is misaligned if its starting address is not a multiple of 4 (offsets 1, 2, 3). For Lit-
tle Endian, we read the bytes from memory and then reverse them to interpret the value correctly.

Start at offset +1:
Bytes read from memory: 52 41 4F 42
Interpreted value (reversed): 424F4152

-4 - CS230

Start at offset +2:

Bytes read from memory: 41 4F 42 59

Interpreted value (reversed): 59424F41

Start at offset +3:

Bytes read from memory: 4F 42 59 45

Interpreted value (reversed): 4559424F

The hexadecimal values of the misaligned 4-byte words are 424F4152, 59424F41, and 4559424F

-5- CS230

e) Consider the case of a processor with an instruction length of 12 bits and with 32 general-purpose
registers, so the size of the address fields is 5 bits. Is it possible to have instruction encodings for the
following?

a)
b)

c)

3 two-address instructions
30 one-address instructions
45 zero-address instructions

Solution:

(1)

(i)

(iii)

Encoding the 3 Two-Address Instructions

Format:
[Opcode][Regl(5bits)][Reg2(5bits))

Operand Bits: The two register fields use 5 + 5 = 10 bits
Opcode Bits: This leaves 12 - 10 = 2 bits for the opcode

With 2 bits, we can create 22 = 4 unique opcodes for two-address instructions. The request is
for 3 instructions, which fit comfortably.
Let’s assign the first 2 bits of the instruction as the primary opcode identifier:

00: Two-address instruction 1
01: Two-address instruction 2
10: Two-address instruction 3

11: This will be our escape code. When the decoder sees 11 in the first two bits, it knows it’s
not a two-address instruction and must look at more bits.

Encoding the 30 One-Address Instructions
All of these instructions must start with our escape code 11.
Format:

[11][Opcode Extension|[Regl(5bits)]

Operand Bits: The single register field uses 5 bits.
Opcode Bits: This leaves 12 - 5 = 7 bits for the total opcode. Since the first 2 bits are fixed as
11, we have 7 - 2 = 5 bits for our opcode extension.

With these 5 extension bits, we can create 2 = 32 unique opcodes for one-address instructions.
The request is for 30 instructions, which also fits.

We can use another escape code here. Let’s say we use 30 of the 32 possible patterns for the
one-address instructions, leaving 2 patterns free to signal that a zero-address instruction is
coming next.

Encoding the 45 Zero-Address Instructions

These instructions must start with the escape codes from the previous steps. Let’s say we use
one of the two remaining one-address opcode patterns as the escape.

Format:
[11][1 — Addr EscapeCode(5bits)|[Opcode Extension]

Operand Bits: There are no register fields, so 0 bits.
Opcode Bits: The total length is 12 bits. The first escape 11 uses 2 bits. The second escape (the

-6 CS230

one-address escape code) uses 5 bits. This leaves 12 - 2 - 5 = 5 bits for the final opcode extension.

With these remaining 5 bits, we can create 2 = 32 unique opcodes for zero-address instructions.
So, not possible for 45 zero-address instructions.

f) Consider a 32-bit hypothetical CPU which supports 1-word long instructions stored in a 32KB
memory. Each instruction contains:

IR e o o

~

[opcode | regl | reg2 | reg3 | immediate]

The opcode field is 6 bits.

There are 3 register operands.

Each register field must encode 64 registers.

The remaining bits go to the immediate constant field.

What is the size of the immediate field?
What is the largest unsigned constant that can be represented in this instruction format?

Step 1: Word and instruction size. Word size = 32 bits. Instruction size = 1 word = 32
bits. Step 2: Field sizes.

e Opcode = 6 bits (given).
e Each register field must encode 64 registers: [log, 64] = 6 bits.
e Three register fields = 3 x 6 = 18 bits.

Step 3: Immediate field size.

Immediate size =32 — (6 + 18) =32 — 24 =

Step 4: Largest unsigned constant. An n-bit immediate can represent unsigned values from
0to2" —1:
0 to 2°—1=255

= [255]

-7 CS230

g) A hypothetical CPU supports 64 opcodes, 256 registers, and 32K memory cells. Every instruction
is fixed-format:

’[opcode | regl | reg2 | mem | immediateld]

A program contains 200 instructions. Instructions must be stored aligned to the memory cell size.
Note: The immediate field is explicitly specified to be 14 bits.
a) Compute the field widths using [log, N'] and hence the instruction size in bits.

b) For each memory organization, give the program size and internal fragmentation (padding)
per instruction and in total:

(i) Byte-addressable memory (cell = 8bits),
(ii) Word-addressable memory (cell = 16 bits),
(iii) Cell size equals the instruction size.

a) Field widths and instruction size.

— opcode | regl | reg2 | mem | immediatel4
Choices (N) 64 256 | 256 | 32K 14
[logy N Bits used 6 8 8 15 14

= Instruction size =6+ 8 + 8+ 15+ 14 = |51 bits

(i) Byte-addressable memory (cell = 8 bits).

e Instruction length = 51 bits.
e One memory cell stores = 8 bits.
e Number of cells per instruction = [51/8] = 7 bytes.

e Therefore, program size = 200 x 7 bytes = | 1400 bytes |.

e Actual allocated per instruction = 7 x 8 = 56 bits.

e Waste per instruction = 56 — 51 = .
e Total waste for 200 instructions = 200 x 5 = 1000 bits = | 125 bytes |.

32 KB RAM

8 bits
8 bits
8 bits
Instruction 1 8 bits
8 bits

8 bits

v 3 bits

|

Instruction 2

Byte-addressable case: each instruction uses 7 bytes, last 5 bits wasted.

(ii) Word-addressable memory (cell = 16 bits).

-8 - CS230

e Instruction length = 51 bits.

e One memory cell stores = 16 bits.

e Number of cells per instruction = [51/16] = 4 words.

e Each word = 16 bits, so allocated per instruction = 4 x 16 = 64 bits.

e Waste per instruction = 64 — 51 = .
e Program size = 200 x 4 words = 800 words =| 1600 bytes |.
e Total waste = 200 x 13 bits = 2600 bits = | 325 bytes |.

32 KB RAM

16 bits

16 bit:
Instruction 1 St

16 bits

e

16 bits

Instruction 2 ;

Word-addressable case: each instruction uses 4 words (8 bytes), last 13 bits wasted.

(iii) Cell size = instruction size (cell = 51 bits).
e Instruction length = 51 bits.
e One cell =51 bits (exact match).

Cells per instruction = 1.

e Program size = 200 x 51 = 10,200 bits =| 1275 bytes|.

Waste per instruction = 0, total waste = 0.

32 KB RAM
Instruction 1 51 bits
Instruction 2 51 bits
Instruction 3 51 bits
Instruction 4 51 bits
Instruction 5 51 bits

f

Exact-fit case: one cell holds the whole instruction, no waste.

Summary Table.

— 9 —
Case ‘ Cells/Instr ‘ Program Size ‘ Waste/Instr (Total)
Byte (8 b) 7 bytes 1400 B 5b (125 B)
Word (16 b) | 4 words =8 B 1600 B 13 b (325 B)

Cell =51b 1 cell 1275 B 0

CS230

