
Digital Logic
Design + Computer
Architecture
Sayandeep Saha

Assistant Professor
Department of Computer
Science and Engineering
Indian Institute of Technology
Bombay

Instruction Set Architecture

How to talk to a Computer?
• Computers can be given “instructions”

• We have a set of instructions for every computer —

called instruction set

• When you write a program, you write

instructions..

• More details later…

• Every instruction some hardware circuit

implemented inside the processor to get its job

done.

• Instruction Set Architecture: specifies the set of

instructions a processor understands, their encoding,

how they access memory etc…

Image generated by ChatGPT

What happens when you write a program
• Say we write:

• a = b + c;

• There is a software program called compiler

• Takes our code and encodes in terms of the

instructions available for the computer

• add reg1, reg2, reg3

• There is another program called assembler which

converts the instruction (sequence) to bits

• 0101110000110101

Image generated by ChatGPT

How to talk to a Computer?
• Instruction Set Architecture: specifies the set of

instructions a processor understands, their encoding,

how they access memory etc…

• End of the day even your ChatGPT is a

sequence of instructions (many billions or

trillions).

• Instruction set is basically an abstraction layer

• Hides the complexity of hardware from the

software designers,

• Interfaces the software and hardware.
Image generated by ChatGPT

Let’s get into the processor a bit
• It is a sequential circuit with a limited number of registers.

• It interacts with an external “memory”.

• Every instruction operates on some operands and generate

results.

• Results and operands are stored in registers.

• But they can also be in memory as the number of

registers are limited

• Note that typically such memory (called DRAM or

Dynamic Random Access Memory) is off chip —outside

the processor

• To operate, you have to bring the data from memory and

store the results back

7

Requirements

Algorithms

Prog. Lang./OS

ISA

uArch

Circuit

Device

Problem Focus

Performance Focus

BOXBOX Si fin - Body!

DrainSource

Gate

f2() {
 f3(s2, &j, &i);
 *s2->p = 10;
 i = *s2->q + i;
}

i1: ld r1, b <p1>
i2: ld r2, c <p1>
i3: ld r5, z <p3>
i4: mul r6, r5, 3 <p3>
i5: add r3, r1, r2 <p1>

f1 f2

f3

f4

f5 s q
p

j

i

fp
f3

SPEC

The Big Picture

Dissection of an Instruction
• Let’s focus on the simplistic view of the processor

add reg1, reg2, reg3

Operation Destination
reg

Source1
Reg

Source2
Reg

• Most of the arithmetic/logical instructions can take

this form — not all though

Instruction Set Architectures (ISA)
• There are many…

• Intel uses X86

• Apple uses a version of AArch64 (ARM)

• The entire world of embedded processors like ST-Microelectronics uses ARM

• Now RISC-V is becoming a mainstream trend.

• We shall study MIPS — a simple to understand ISA

Instruction Set Architectures (ISA)
• We shall study MIPS — a simple to understand ISA

• Great for beginning…

• Similar to ARM

• Still in use in the embedded devices

• Your smart card

• Modems

• Bitcoin-wallets

Now let’s write some MIPS
• We shall name the registers as $0, $1, or $a0, $g1

etc…

• Now we shall try something a bit more complex…

add reg1, reg2, reg3

add $0, $1, $2

Now let’s write some MIPS
• Let’s compute: a = b+c-d

• No idea? — get idea :P
add reg1, reg2, reg3

add $0, $1, $2

Now let’s write some MIPS
• Let’s compute: a = b+c-d

• Assume we have add and sub instructions taking two

sources and one destination register

add $0, $1, $2

sub $0, $1, $2

Now let’s write some MIPS
• Let’s compute: a = b+c-d

• Assume we have add and sub instructions taking two

sources and one destination register

add $0, $1, $2

• First’ let’s simplify :

• t = b+c

• a = t-d

• Now, I can map to instructions..

• add $r0, $r1, $r2 //t = b+c

• sub $d0, $r0, $r3 //a = t-d

sub $0, $1, $2

• Observe: I use a temporary register…

Now let’s write some MIPS
• Let’s try: f = (g+h)-(i+j)

Now let’s write some MIPS
• Let’s try: f = (g+h)-(i+j)

• add $r0, $r1, $r2 //x = g+h

• add $r3, $r4, $r5 //y = i+j

• Sub $r0, $r0, $r3 //f = x-y

• Food of thought: Well, do I really need to reuse

registers???

Ok…A Few MIPS Details…
• We have 32 registers in the processor

• So we have to reuse registers, no other option…

• Typically, registers are 32-bits…

• But why don’t we have infinite number of registers

• Well, every piece of register is a real hardware…

• But: Why 32??

Ok…A Few MIPS Details…
• We have 32 registers in the processor

• So we have to reuse registers, no other option…

• Typically, registers are 32-bits…

• Each instruction also encoded in 32 bits

• But why don’t we have infinite number of registers

• Well, every piece of register is a real

hardware…

• But: Why 32??

The choice depends on several factors, like the speed of

the execution, the usage and size of memory, the size of

code, the encoding and decoding of instructions….It’s

not a random choice…

Immediate Instructions…
• b = a + 7

• We don’t need a register for the constant…

• Can you tell me why?? Just guess…addi $r0, $r1, 7

Immediate Instructions…
• b = a + 7

• We don’t need a register for the constant…

• Can you tell me why?? Just guess…addi $r0, $r1, 7

• i stands for ‘immediate’

• The constant is in 2’s complement form and of 16 bits.

• Question: Do I need a subi instruction??

Zero Is Very Special in Our Life…
• MIPS has a register which is called $zero

• It stores 0

• What is the purpose?

• Well, a lot…you will see

• A simple use of $zero

add $r1, $r0, $zero // a = b

• But again, why???

Zero Is Very Special in Our Life…
• MIPS has a register which is called $zero

• It stores 0

• What is the purpose?

• Well, a lot…you will see

• A simple use of $zero

add $r1, $r0, $zero // a = b

• But again, why??? — just not needed

a=b….The Pseudo-Instructions
• You can still write…

move $r1, $r0 // a = b

• But it is a pseudo-instruction

• Internally it converts to add

• Once again an engineering choice

• There are many such pseudo-instructions. See:

https://en.wikibooks.org/wiki/MIPS_Assembly/Pseudoinstructions

https://en.wikibooks.org/wiki/MIPS_Assembly/Pseudoinstructions

Logical Instructions
• Your good old Boolean algebra

• Remember: These are bitwise operations…

• Treats the operands as bit strings instead of numbers

