
Digital Logic
Design + Computer
Architecture
Sayandeep Saha

Assistant Professor
Department of Computer
Science and Engineering
Indian Institute of Technology
Bombay

Instruction Set Architecture

How to talk to a Computer?
• Computers can be given “instructions”

• We have a set of instructions for every computer —

called instruction set

• When you write a program, you write

instructions..

• More details later…

• Every instruction some hardware circuit

implemented inside the processor to get its job

done.

• Instruction Set Architecture: specifies the set of

instructions a processor understands, their encoding,

how they access memory etc…

Image generated by ChatGPT

What happens when you write a program
• Say we write:

• a = b + c;

• There is a software program called compiler

• Takes our code and encodes in terms of the

instructions available for the computer

• add reg1, reg2, reg3

• There is another program called assembler which

converts the instruction (sequence) to bits

• 0101110000110101

Image generated by ChatGPT

How to talk to a Computer?
• Instruction Set Architecture: specifies the set of

instructions a processor understands, their encoding,

how they access memory etc…

• End of the day even your ChatGPT is a

sequence of instructions (many billions or

trillions).

• Instruction set is basically an abstraction layer

• Hides the complexity of hardware from the

software designers,

• Interfaces the software and hardware.
Image generated by ChatGPT

Let’s get into the processor a bit
• It is a sequential circuit with a limited number of registers.

• It interacts with an external “memory”.

• Every instruction operates on some operands and generate

results.

• Results and operands are stored in registers.

• But they can also be in memory as the number of

registers are limited

• Note that typically such memory (called DRAM or

Dynamic Random Access Memory) is off chip —outside

the processor

• To operate, you have to bring the data from memory and

store the results back

7

Requirements

Algorithms

Prog. Lang./OS

ISA

uArch

Circuit

Device

Problem Focus

Performance Focus

BOXBOX Si fin - Body!

DrainSource

Gate

f2() {
 f3(s2, &j, &i);
 *s2->p = 10;
 i = *s2->q + i;
}

i1: ld r1, b <p1>
i2: ld r2, c <p1>
i3: ld r5, z <p3>
i4: mul r6, r5, 3 <p3>
i5: add r3, r1, r2 <p1>

f1 f2

f3

f4

f5 s q
p

j

i

fp
f3

SPEC

The Big Picture

Dissection of an Instruction
• Let’s focus on the simplistic view of the processor

add reg1, reg2, reg3

Operation Destination
reg

Source1
Reg

Source2
Reg

• Most of the arithmetic/logical instructions can take

this form — not all though

Instruction Set Architectures (ISA)
• There are many…

• Intel uses X86

• Apple uses a version of AArch64 (ARM)

• The entire world of embedded processors like ST-Microelectronics uses ARM

• Now RISC-V is becoming a mainstream trend.

• We shall study MIPS — a simple to understand ISA

Instruction Set Architectures (ISA)
• We shall study MIPS — a simple to understand ISA

• Great for beginning…

• Similar to ARM

• Still in use in the embedded devices

• Your smart card

• Modems

• Bitcoin-wallets

Now let’s write some MIPS
• We shall name the registers as $0, $1, or $a0, $g1

etc…

• Now we shall try something a bit more complex…

add reg1, reg2, reg3

add $0, $1, $2

Now let’s write some MIPS
• Let’s compute: a = b+c-d

• No idea? — get idea :P
add reg1, reg2, reg3

add $0, $1, $2

Now let’s write some MIPS
• Let’s compute: a = b+c-d

• Assume we have add and sub instructions taking two

sources and one destination register

add $0, $1, $2

sub $0, $1, $2

Now let’s write some MIPS
• Let’s compute: a = b+c-d

• Assume we have add and sub instructions taking two

sources and one destination register

add $0, $1, $2

• First’ let’s simplify :

• t = b+c

• a = t-d

• Now, I can map to instructions..

• add $r0, $r1, $r2 //t = b+c

• sub $d0, $r0, $r3 //a = t-d

sub $0, $1, $2

• Observe: I use a temporary register…

Now let’s write some MIPS
• Let’s try: f = (g+h)-(i+j)

Now let’s write some MIPS
• Let’s try: f = (g+h)-(i+j)

• add $r0, $r1, $r2 //x = g+h

• add $r3, $r4, $r5 //y = i+j

• Sub $r0, $r0, $r3 //f = x-y

• Food of thought: Well, do I really need to reuse

registers???

Ok…A Few MIPS Details…
• We have 32 registers in the processor

• So we have to reuse registers, no other option…

• Typically, registers are 32-bits…

• But why don’t we have infinite number of registers

• Well, every piece of register is a real hardware…

• But: Why 32??

Ok…A Few MIPS Details…
• We have 32 registers in the processor

• So we have to reuse registers, no other option…

• Typically, registers are 32-bits…

• Each instruction also encoded in 32 bits

• But why don’t we have infinite number of registers

• Well, every piece of register is a real

hardware…

• But: Why 32??

The choice depends on several factors, like the speed of

the execution, the usage and size of memory, the size of

code, the encoding and decoding of instructions….It’s

not a random choice…

Immediate Instructions…
• b = a + 7

• We don’t need a register for the constant…

• Can you tell me why?? Just guess…addi $r0, $r1, 7

Immediate Instructions…
• b = a + 7

• We don’t need a register for the constant…

• Can you tell me why?? Just guess…addi $r0, $r1, 7

• i stands for ‘immediate’

• The constant is in 2’s complement form and of 16 bits.

• Question: Do I need a subi instruction??

Zero Is Very Special in Our Life…
• MIPS has a register which is called $zero

• It stores 0

• What is the purpose?

• Well, a lot…you will see

• A simple use of $zero

add $r1, $r0, $zero // a = b

• But again, why???

Zero Is Very Special in Our Life…
• MIPS has a register which is called $zero

• It stores 0

• What is the purpose?

• Well, a lot…you will see

• A simple use of $zero

add $r1, $r0, $zero // a = b

• But again, why??? — just not needed

a=b….The Pseudo-Instructions
• You can still write…

move $r1, $r0 // a = b

• But it is a pseudo-instruction

• Internally it converts to add

• Once again an engineering choice

• There are many such pseudo-instructions. See:

https://en.wikibooks.org/wiki/MIPS_Assembly/Pseudoinstructions

https://en.wikibooks.org/wiki/MIPS_Assembly/Pseudoinstructions

Logical Instructions
• Your good old Boolean algebra

• Remember: These are bitwise operations…

• Treats the operands as bit strings instead of numbers

Logical Instructions
• Your good old Boolean algebra

• Remember: These are bitwise operations…

• Treats the operands as bit strings instead of numbers

Critical Thinking…
• We have seen that constants are 16 bits…

• But registers are 32-bits…

• How to store a 32-bit constant in a register???

• Let’s say the constant is:

• 11110000000000001111111111111111

• In Hex: 0xF000FFFF

• Info: You have the following new instruction:

• lui $r0, const // loads cosnt in the upper 16 bits of the

register $r0

Critical Thinking…
• Think, how the data will be represented inside your register…

• Initially The register $r0 is at (simplifying assumption…does not matter)

• Now do: lui $r0, 0xF000

• Now do, addi $r0, 0xFFFF

1111000000000000 1111111111111111
MSB LSB

0000000000000000 0000000000000000
MSB LSB

1111000000000000 0000000000000000
MSB LSB

1111000000000000 1111111111111111
MSB LSB

• You can also do ori

How to Use Your Memory??
• Recall, that MIPS only have 32 registers.

• Have you ever cared about counts while declaring

variables in your program? — No way…

• Then how things work?

• How can every program fits itself in 32

registers?

• Solution:

• Just store things in an external memory

• Fetch the data to registers whenever it is required

• Store the results after processing.

• But still something is missing here…What is

that??

How to Use Your Memory??

• Name this person?

How to Use Your Memory??

• Name this person?

• John Luis von Neumann

How to Use Your Memory??

● In the old days, “programming” involved actually changing a machine’s
physical configuration:
− by flipping switches or connecting wires.
− Memory only stored data that was being operated on.

● Then around 1944, John von Neumann and others got the idea to
encode instructions in a format that could be stored in memory just
like data. — Stored program paradigm
− The processor interprets and executes instructions from memory

How to Use Your Memory??

● In the old days, “programming” involved actually changing a machine’s
physical configuration:
− by flipping switches or connecting wires.
− Memory only stored data that was being operated on.

● Then around 1944, John von Neumann and others got the idea to
encode instructions in a format that could be stored in memory just
like data. — Stored program paradigm
− The processor interprets and executes instructions from memory

How to Use Your Memory??

● Load-Store Architecture:
● Load your data to process
● Store it back…

● Instructions are handled in a slightly different
manner….will come to that…

Memory Instructions

Memory Instructions
● Load-Store Architecture:

● Load your data to process
● Store it back…

● Instructions are handled in a slightly different
manner….will come to that…

● But, a critical question:
● How do you know where to find the data inside

memory?

● But, a critical question:
● How do you know where to find the data inside

memory?
● Memory has addresses
● Think it like a large contiguous array…
● Every byte in memory has an unique

address
● Byte-addressable

● BTW, each address is 32-bit in MIPS

Memory Instructions

● The lw is interpreted as “load word”
● MIPS also have other variants like “load byte” (lb)

● Data comes in $t0.
● But what is the 1($a0) part signify?

● $a0 is the base address of the location you want to
read from memory

● 1 is called the offset.
● But why don’t you read directly?

Memory Instructions

● The lw is interpreted as “load word”
● MIPS also have other variants like “load byte” (lb)

● Data comes in $t0.
● But what is the 1($a0) part signify?

● $a0 is the base address of the location you want to
read from memory

● 1 is called the offset.
● But why don’t you read directly?

● Again a design choice, to ease compilation,
programming, and hardware design…

Memory Instructions

● lw is interpreted as “load word”
● lb is “load byte”
● For the lw, we need the base+offset ($s0 + 1) to be

always divisible by 4 — word alignment
● Why?
● Nothing such for lb

Memory Instructions: Word vs. Byte
lw $t0, 1($s0) lb $t0, 1($s0)

● What Lies Beneath?
● lb just read the byte in the calculated address
● lw reads four consecutive bytes starting from the

calculated address.
● Why word alignment — again, it simplifies hardware

OS, compiler….

● lw is interpreted as “load word”
● lb is “load byte”
● For the lw, we need the base+offset ($s0 + 1) to be

always divisible by 4 — word alignment
● Why?
● Nothing such for lb

Memory Instructions: Word vs. Byte
lw $t0, 1($s0) lb $t0, 1($s0)

● What Lies Beneath?
● lb just read the byte in the calculated address
● lw reads four consecutive bytes starting from the

calculated address.
● Why word alignment — again, it simplifies hardware

OS, compiler….

Endianness (Byte ordering within a word)

41

• Big Endian: address of most significant byte = word address
(xx00 = Big end of word), MIPS

• Little Endian:	address of least significant byte = word address
(xx00 = Little end of word), x86

msb lsb3 2 1 0
little endian byte 0

0 1 2 3 big endian byte 0

Just for an example, do not take it for granted …

42

unsigned int i = 1;
char *c = (char*)&i; // reading the LSB
Printf (“%d”, *c);

unsigned int i = 12345678;
char *c = (char*)&i;
Printf (“%d”, *c);

Computer Architecture

Example

43

unsigned int i = 1;
char *c = (char*)&i; // reading the LSB
Printf (“%d”, *c);
Little endian: 1
Big endian: 0
 unsigned int i = 12345678;

char *c = (char*)&i;
Printf (“%d”, *c);
Little endian: 78
Big endian: 12

● Ok, Von Neumann said, data and code both are stored in the
same memory.
● In practice, this may lead to an issue — at a specific interval

of time, you can either fetch a data or an instruction.
● Affects parallelisation

● What if you separate the data and instruction memory and
buses?
● That is called Harvard Architecture.
● Modern commercial systems use a combination of both

● RAM stores both instruction and data
● But there are other intermediate memory (caches) which

are separated for instruction and data

Another Important Point…

Source: Internet

Load, Store Cheatsheet

Load Store

Load+Store+Instruction-fetch

Program Counter
Points to the next instruction in

the memory to be fetched

● Data and instructions at the same place

● Registers are limited — 32 bit wide

● Instructions are 32 bit wide

● Registers are accessed by names

● Memory is accessed by addresses

Summary…

