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Instruction Set Architecture



How to talk to a Computer?
• Computers can be given “instructions” 

• We have a set of instructions for every computer — 

called instruction set  

• When you write a program, you write 

instructions.. 

• More details later… 

• Every instruction some hardware circuit 

implemented inside the processor to get its job 

done. 

• Instruction Set Architecture: specifies the set of 

instructions a processor understands, their encoding, 

how they access memory etc…
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What happens when you write a program
• Say we write: 

• a = b + c; 

• There is a software program called compiler 

• Takes our code and encodes in terms of the 

instructions available for the computer 

• add reg1, reg2, reg3 

• There is another program called assembler which 

converts the instruction (sequence) to bits 

• 0101110000110101 

 

Image generated by ChatGPT 



How to talk to a Computer?
• Instruction Set Architecture: specifies the set of 

instructions a processor understands, their encoding, 

how they access memory etc… 

• End of the day even your ChatGPT is a 

sequence of instructions (many billions or 

trillions). 

• Instruction set is basically an abstraction layer  

• Hides the complexity of hardware from the 

software designers, 

• Interfaces the software and hardware.
Image generated by ChatGPT 



Let’s get into the processor a bit
• It is a sequential circuit with a limited number of registers. 

• It interacts with an external “memory”. 

• Every instruction operates on some operands and generate 

results. 

• Results and operands are stored in registers. 

• But they can also be in memory as the number of 

registers are limited 

• Note that typically such memory (called DRAM or 

Dynamic Random Access Memory) is off chip —outside 

the processor 

• To operate, you have to bring the data from memory and 

store the results back
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f2() { 
   f3(s2, &j, &i); 
   *s2->p = 10; 
   i = *s2->q + i; 
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Dissection of an Instruction
• Let’s focus on the simplistic view of the processor

add reg1, reg2, reg3

Operation Destination 
reg

Source1 
Reg

Source2 
Reg

• Most of the arithmetic/logical instructions can take 

this form — not all though



Instruction Set Architectures (ISA)
• There are many… 

• Intel uses X86 

• Apple uses a version of AArch64 (ARM) 

• The entire world of embedded processors like ST-Microelectronics uses ARM 

• Now RISC-V is becoming a mainstream trend. 

• We shall study MIPS — a simple to understand ISA 



Instruction Set Architectures (ISA)
• We shall study MIPS — a simple to understand ISA  

• Great for beginning… 

• Similar to ARM 

• Still in use in the embedded devices 

• Your smart card 

• Modems 

• Bitcoin-wallets



Now let’s write some MIPS
• We shall name the registers as $0, $1, or $a0, $g1 

etc… 

• Now we shall try something a bit more complex…

add reg1, reg2, reg3

add $0, $1, $2



Now let’s write some MIPS
• Let’s compute: a = b+c-d  

• No idea? — get idea :P
add reg1, reg2, reg3

add $0, $1, $2



Now let’s write some MIPS
• Let’s compute: a = b+c-d  

• Assume we have add and sub instructions taking two 

sources and one destination register

add $0, $1, $2

sub $0, $1, $2



Now let’s write some MIPS
• Let’s compute: a = b+c-d  

• Assume we have add and sub instructions taking two 

sources and one destination register

add $0, $1, $2

• First’ let’s simplify :  

• t = b+c 

• a = t-d

• Now, I can map to instructions.. 

• add $r0, $r1, $r2 //t = b+c 

• sub $d0, $r0, $r3 //a = t-d  

sub $0, $1, $2

• Observe: I use a temporary register…



Now let’s write some MIPS
• Let’s try: f = (g+h)-(i+j) 



Now let’s write some MIPS
• Let’s try: f = (g+h)-(i+j) 

• add $r0, $r1, $r2 //x = g+h 

• add $r3, $r4, $r5 //y = i+j 

• Sub $r0, $r0, $r3 //f = x-y

• Food of thought: Well, do I really need to reuse 

registers???



Ok…A Few MIPS Details…
• We have 32 registers in the processor 

• So we have to reuse registers, no other option… 

• Typically, registers are 32-bits…

• But why don’t we have infinite number of registers 

• Well, every piece of register is a real hardware…

• But: Why 32??



Ok…A Few MIPS Details…
• We have 32 registers in the processor 

• So we have to reuse registers, no other option… 

• Typically, registers are 32-bits… 

• Each instruction also encoded in 32 bits

• But why don’t we have infinite number of registers 

• Well, every piece of register is a real 

hardware…

• But: Why 32??

The choice depends on several factors, like the speed of 

the execution, the usage and size of memory, the size of 

code, the encoding and decoding of instructions….It’s 

not a random choice…



Immediate Instructions…
• b = a + 7

• We don’t need a register for the constant… 

• Can you tell me why?? Just guess…addi $r0, $r1, 7



Immediate Instructions…
• b = a + 7

• We don’t need a register for the constant… 

• Can you tell me why?? Just guess…addi $r0, $r1, 7

• i stands for ‘immediate’ 

• The constant is in 2’s complement form and of 16 bits. 

• Question: Do I need a subi instruction??



Zero Is Very Special in Our Life…
• MIPS has a register which is called $zero 

• It stores 0 

• What is the purpose? 

• Well, a lot…you will see 

• A simple use of  $zero

add $r1, $r0, $zero // a = b

• But again, why???



Zero Is Very Special in Our Life…
• MIPS has a register which is called $zero 

• It stores 0 

• What is the purpose? 

• Well, a lot…you will see 

• A simple use of  $zero

add $r1, $r0, $zero // a = b

• But again, why??? — just not needed



a=b….The Pseudo-Instructions
• You can still write…

move $r1, $r0 // a = b

• But it is a pseudo-instruction 

• Internally it converts to add   

• Once again an engineering choice 

• There are many such pseudo-instructions. See:

https://en.wikibooks.org/wiki/MIPS_Assembly/Pseudoinstructions

https://en.wikibooks.org/wiki/MIPS_Assembly/Pseudoinstructions


Logical Instructions
• Your good old Boolean algebra

• Remember: These are bitwise operations… 

• Treats the operands as bit strings instead of numbers



Logical Instructions
• Your good old Boolean algebra

• Remember: These are bitwise operations… 

• Treats the operands as bit strings instead of numbers



Critical Thinking…
• We have seen that constants are 16 bits… 

• But registers are 32-bits… 

• How to store a 32-bit constant in a register???  

• Let’s say the constant is: 

• 11110000000000001111111111111111 

• In Hex: 0xF000FFFF 

• Info: You have the following new instruction: 

• lui $r0, const // loads cosnt in the upper 16 bits of the 

register $r0



Critical Thinking…
• Think, how the data will be represented inside your register… 

• Initially The register $r0 is at (simplifying assumption…does not matter) 

• Now do: lui $r0, 0xF000 

•  Now do, addi $r0, 0xFFFF

1111000000000000 1111111111111111
MSB LSB

0000000000000000 0000000000000000
MSB LSB

1111000000000000 0000000000000000
MSB LSB

1111000000000000 1111111111111111
MSB LSB

• You can also do ori



How to Use Your Memory??
• Recall, that MIPS only have 32 registers. 

• Have you ever cared about counts while declaring 

variables in your program? — No way… 

• Then how things work? 

• How can every program fits itself in 32 

registers?



• Solution:  

• Just store things in an external memory 

• Fetch the data to registers whenever it is required 

• Store the results after processing.  

• But still something is missing here…What is 

that??

How to Use Your Memory??



• Name this person?

How to Use Your Memory??



• Name this person? 

• John Luis von Neumann

How to Use Your Memory??



● In the old days, “programming” involved actually changing a machine’s 
physical configuration: 
−  by flipping switches or connecting wires. 
− Memory only stored data that was being operated on. 

● Then around 1944, John von Neumann and others got the idea to 
encode instructions in a format that  could be stored  in  memory just 
like data. — Stored program paradigm 
− The processor interprets and executes instructions from memory

How to Use Your Memory??



● In the old days, “programming” involved actually changing a machine’s 
physical configuration: 
−  by flipping switches or connecting wires. 
− Memory only stored data that was being operated on. 

● Then around 1944, John von Neumann and others got the idea to 
encode instructions in a format that  could be stored  in  memory just 
like data. — Stored program paradigm 
− The processor interprets and executes instructions from memory

How to Use Your Memory??



● Load-Store Architecture:  
● Load your data to process 
● Store it back… 

● Instructions are handled in a slightly different 
manner….will come to that…

Memory Instructions



Memory Instructions
● Load-Store Architecture:  

● Load your data to process 
● Store it back… 

● Instructions are handled in a slightly different 
manner….will come to that… 

● But, a critical question: 
● How do you know where to find the data inside 

memory?



● But, a critical question: 
● How do you know where to find the data inside 

memory? 
● Memory has addresses 
● Think it like a large contiguous array… 
● Every byte in memory has an unique 

address 
● Byte-addressable 

● BTW, each address is 32-bit in MIPS

Memory Instructions



● The lw is interpreted as “load word” 
● MIPS also have other variants like “load byte” (lb) 

● Data comes in $t0. 
● But what is the 1($a0) part signify? 

●  $a0 is the base address of the location you want to 
read from memory 

● 1 is called the offset. 
● But why don’t you read directly?

Memory Instructions



● The lw is interpreted as “load word” 
● MIPS also have other variants like “load byte” (lb) 

● Data comes in $t0. 
● But what is the 1($a0) part signify? 

●  $a0 is the base address of the location you want to 
read from memory 

● 1 is called the offset. 
● But why don’t you read directly? 

● Again a design choice, to ease compilation, 
programming, and hardware design…

Memory Instructions



● lw is interpreted as “load word” 
● lb is “load byte”  
● For the lw, we need the base+offset ($s0 + 1) to be 

always divisible by 4 — word alignment 
● Why? 
● Nothing such for lb

Memory Instructions: Word vs. Byte
lw $t0, 1($s0) lb $t0, 1($s0)

● What Lies Beneath? 
● lb just read the byte in the calculated address 
● lw reads four consecutive bytes starting from the 

calculated address. 
● Why word alignment — again, it simplifies hardware 

OS, compiler….



● lw is interpreted as “load word” 
● lb is “load byte”  
● For the lw, we need the base+offset ($s0 + 1) to be 

always divisible by 4 — word alignment 
● Why? 
● Nothing such for lb

Memory Instructions: Word vs. Byte
lw $t0, 1($s0) lb $t0, 1($s0)

● What Lies Beneath? 
● lb just read the byte in the calculated address 
● lw reads four consecutive bytes starting from the 

calculated address. 
● Why word alignment — again, it simplifies hardware 

OS, compiler….



Endianness (Byte ordering within a word)

41

• Big Endian:  address of most significant byte = word address  
(xx00 = Big end of word), MIPS 

• Little Endian:	address of least significant byte = word address 
(xx00 = Little end of word), x86

msb lsb3     2      1     0
little endian byte 0

0     1      2     3 big endian byte 0



Just for an example, do not take it for granted …

42

unsigned int i = 1; 
char *c = (char*)&i;  // reading the LSB 
Printf (“%d”, *c); 
                        

unsigned int i = 12345678; 
char *c = (char*)&i; 
Printf (“%d”, *c);



Computer Architecture

Example

43

unsigned int i = 1; 
char *c = (char*)&i;  // reading the LSB 
Printf (“%d”, *c); 
Little endian: 1 
Big endian: 0
                        unsigned int i = 12345678; 

char *c = (char*)&i; 
Printf (“%d”, *c);
Little endian: 78 
Big endian: 12



● Ok, Von Neumann said, data and code both are stored in the 
same memory. 
● In practice, this may lead to an issue — at a specific interval 

of time, you can either fetch a data or an instruction. 
● Affects parallelisation 

● What if you separate the data and instruction memory and 
buses? 
● That is called Harvard Architecture. 
● Modern commercial systems use a combination of both  

● RAM stores both instruction and data 
● But there are other intermediate memory (caches) which 

are separated for instruction and data

Another Important Point…

Source: Internet



Load, Store Cheatsheet

Load Store

Load+Store+Instruction-fetch

Program Counter 
Points to the next instruction in 

the memory to be fetched



● Data and instructions at the same place  

● Registers are limited — 32 bit wide 

● Instructions are 32 bit wide 

● Registers are accessed by names 

● Memory is accessed by addresses

Summary…



● If, else statements in your program… 

● How they are interpreted as instructions??

Decision Making…



Decision Making…



Simple Example…
● Let’s compile: 

● if (i == j) f = g + h; else f = g - h; 

$s0 has i, $s1 has j, $s2 has g, $s3 has h, $s4 has f

Assume:

     beq $s0, $s1, if_equal    # if i == j, jump to if_equal 
   sub $s4, $s2, $s3         # else: f = g - h 
   j end_if                  # jump to end 
if_equal: 
    add $s4, $s2, $s3        # f = g + h 
end_if:

Unconditional Jump

jumps to a specific label 



Decision Making…
● So you can check conditions: 

● If (x = 0).. 
● If (x != 0).. 
● If (x = y).. 
● If (x != y)…

● But how about the following code??



Decision Making…

● Set on less than (slt) 
●

● After using slt, we can use the beq or bne 



Simple Example…
● Let’s compile: 

● if (i < j) f = g + h; else f = g - h; 

$s0 has i, $s1 has j, $s2 has g, $s3 has h, $s4 has f

Assume:

    slt $t0, $s0, $s1         # $t0 = 1 if i < j 
    beq $t0, $zero, ELSE      # if $t0 == 0, i >= j, jump to ELSE 
    add $s4, $s2, $s3         # f = g + h 
    j END_IF                  # jump to END_IF 
ELSE: 
    sub $s4, $s2, $s3         # f = g - h 
END_IF:



Dealing With Loops
● Let’s first see how we deal with arrays… 

● f = h + A[8] 

• $t0 has A[8], $s5 has base address of the array A, $s4 has f, $s3 has h 

• Also assume “A[8]” as uint8_t (a byte)

Assume:

   lbu $t0, 8($s5)             # Load word A[8] with byte offset 
   add $s4, $s3, $t0          # f = h + A[8]

• But what is “A[8]” is int (4 bytes)?????

    lw $t0, 32($s5)           # Load A[8], 8 * 4 = 32 (word)offset 
    add $s4, $s3, $t0         # f = h + A[8]



Dealing With Loops
● Let’s consider: 

● while (A[i] > k) i = i+1;  

$s0 has i,  
$t1 has address of  A[i]  
$t2 has A[i]  
$s6 has k

Assume:    LOOP: 
    sll $t1, $s0, 2           # $s0 = i, i*4 for word offset 
    add $t1, $s5, $t1         # Compute address A[i] 
    lw $t2, 0($t1)            # Load A[i] (integer) 
    slt $t3, $t2, $s6         # $t3 = 1 if A[i] < k 
    bne $t3, $zero, END_LOOP  # if A[i] < k, exit loop 
    addi $s0, $s0, 1          # i = i + 1 
    j LOOP 
END_LOOP: 

Performs left logical shift by two bits..why??



Dealing With Loops
● What happens if: 

● while (A[i] == k) i = i+1;  

$s0 has i,  
$t1 has address of  A[i]  
$t2 has A[i]  
$s6 has k

Assume:



Dealing With Loops
● What happens if: 

● while (A[i] == k) i = i+1;  

$s0 has i,  
$t1 has address of  A[i]  
$t2 has A[i]  
$s6 has k

Assume:
   LOOP: 
    sll $t1, $s0, 2           # $s0 = i, i*4 for word offset 
    add $t1, $s5, $t1         # Compute address A[i] 
    lw $t2, 0($t1)            # Load A[i] (integer) 
    bne $t2, $s6, END_LOOP    # if A[i] != k, exit loop 
    addi $s0, $s0, 1          # i = i + 1 
    j LOOP 
END_LOOP:



● What happens if: 
● while (A[i] == k) i = i+1;  

$s0 has I,  
$t1 has address of  A[i]  
$t2 has A[i]  
$s6 has k

Assume:    LOOP: 
    sll $t1, $s0, 2           # $s0 = i, i*4 for word offset 
    add $t1, $s5, $t1         # Compute address A[i] 
    lw $t2, 0($t1)            # Load A[i] (integer) 
    bne $t2, $s6, END_LOOP    # if A[i] != k, exit loop 
    addi $s0, $s0, 1          # i = i + 1 
    j LOOP 
END_LOOP:

More on Jumping…

• Normally: 
• PC, PC+4, PC+8,…. 
• But jump instruction loads a new value to the PC 

• It’s the offset in the program where the exception should divert (the label is basically that)



● What happens if: 
● while (A[i] == k) i = i+1;  

$s0 has I,  
$t1 has address of  A[i]  
$t2 has A[i]  
$s6 has k

Assume:    LOOP: 
    sll $t1, $s0, 2           # $s0 = i, i*4 for word offset 
    add $t1, $s5, $t1         # Compute address A[i] 
    lw $t2, 0($t1)            # Load A[i] (integer) 
    bne $t2, $s6, END_LOOP    # if A[i] != k, exit loop 
    addi $s0, $s0, 1          # i = i + 1 
    j LOOP 
END_LOOP:

More on Jumping…

• Normally: 
• PC, PC+4, PC+8,…. 
• But jump instruction loads a new value to the PC 

• It’s the offset in the program where the exception should divert (the label is basically that) 
• But jumping is even more exotic…Let’s see why



More on Jumping…



More on Jumping…Working with Functions
• Anatomy of a Function Call: 

• Put parameters in a place where the function can 
access them.  

• Transfer control to the function.  
• Acquire the storage resources needed for the 

function.  
• Perform the desired task.  
• Put the result value in a place where the caller 

program can access it.  
• Return control to the point of origin, since a 

function can be called from several points in a 
program.

int sum(int a, int b) 
{ 
    int c=a+b; 
    return c; 
} 
void main (void) 
{ 
    int i=1;  
    int j=2; 
    int k = sum(i,j); 
   // ….. 
}

Function call 
jumps to a 
location in 
your code

• Caller: One who calls the function 
• Callee: The function which is being called



Working with Functions — The MIPS Case
• MIPS Support for Function Call: 

• $a0–$a3: four argument registers in which to 
pass parameters  

• $v0–$v1: two value registers in which to return 
values  

• $ra: one return address register to return to the 
point of origin

• Ways of Jumping..: 

• jal Label:  Jump and link 

• jr $ra: Jump back to the return address stored 
in $ra



Working with Functions — The MIPS Case
• Ways of Jumping..: 

• jal Label:   

• First, save PC+4 in $ra 

• The instruction to be executed next is at Label 

• jr $ra: Jump back to the return address stored in $ra 
(PC + 4)



Working with Functions — The MIPS Case
Complete Picture

sum: 
 PC+100: addi $v0, $a0, 4     # c = a + 4, return in $v0 
 PC+104: jr $ra               # return to PC+12 

main: 
 PC+4:  li $a0, 2             # i = 2 
 PC+8:  jal sum               # call sum(i); $ra = PC+12 
 PC+12: addi $s1, $v0, 0      # k = return value (k = 6)

int sum(int a) 
{ 
    int c=a+4; 
    return c; 
} 
void main (void) 
{ 
    int i=2;  
    int k = sum(i); 
}



Working with Functions — The MIPS Case
• MIPS Support for Function Call: 

• $a0–$a3: four argument registers in which to 
pass parameters  

• $v0–$v1: two value registers in which to return 
values  

• $ra: one return address register to return to the 
point of origin

• Ways of Jumping..: 

• jal Label:  Jump and link 

• jr $ra: Jump back to the return address stored 
in $ra



Functions — More Parameters

int leaf_example (int g, int h, int i, int j, int k)  
{      

int f; 
f = (g + h) – (i + j) + k;      
return f;  
} 

void main (void) 
{ 
    int g=2;  
    int h=3; 
    int i=1; 
    int j=1; 
    int k=3;  
    int l = leaf_example(g,h,i,j,k); 
}

• What if there are more than 4 parameters? 

• What if the function needs more registers (beyond two 
return registers) to operate? 

• Remember: caller must have its state restored after 
callee finishes. 



Functions — More Parameters

int leaf_example (int g, int h, int i, int j, 
int k)  
{      

int f; 
f = (g + h) – (i + j) + k;      
return f;  
} 

void main (void) 
{ 
    int g=2;  
    int h=3; 
    int i=1; 
    int j=1; 
    int k=3;  
    int l = leaf_example(g,h,i,j,k); 
}

leaf_example: 
    addi $sp, $sp, -8        # make space for s0, t0 
    sw $s0, 4($sp)           # save s0 
    sw $t0, 0($sp)           # save t0 

    add $s0, $a0, $a1        # s0 = g + h 
    add $t0, $a2, $a3        # t0 = i + j 
    sub $v0, $s0, $t0        # v0 = (g + h) - (i + j) 
    add $v0, $v0, $t2        # v0 += k (f = ... + k) 

    lw $t0, 0($sp)           # restore t0 
    lw $s0, 4($sp)           # restore s0 
    addi $sp, $sp, 8         # deallocate stack 
    jr $ra                   # return

What is this 
trick?



Stack — What is it?
• A region in DRAM 
• Grows in the lower direction 
• Push and Pop are the main operations 
• Stack pointer: A special register 

• A value denoting the most recently allocated 
address in a stack that shows where registers 
should be spilled or where old register values 
can be found. 



Functions — More Parameters

leaf_example: 
    addi $sp, $sp, -8        # make space for s0, t0 
    sw $s0, 4($sp)           # save s0 
    sw $t0, 0($sp)           # save t0 

    add $s0, $a0, $a1        # s0 = g + h 
    add $t0, $a2, $a3        # t0 = i + j 
    sub $v0, $s0, $t0        # v0 = (g + h) - (i + 
j) 
    add $v0, $v0, $t2        # v0 += k (f = ... + k) 

    lw $t0, 0($sp)           # restore t0 
    lw $s0, 4($sp)           # restore s0 
    addi $sp, $sp, 8         # deallocate stack 
    jr $ra                   # return

What is this 
trick?• MIPS Support for Function Call: 

• We need registers beyond $a3 

• Use other registers $s0, $t0 

• But the caller function might be already have 
some values in them. 

• Solution: store them in memory (stack) before 
using in the function. 
• Restore back before exiting 

• This idea of saving registers is called register 
spilling



Computer Architecture

main(){ 
a = a + f1(a); 
}                                                       f1: 
f1(a) {                                                     f2’s argument in $a0 to $a3  
              a = a -  f2(a);  return a;}                        jal f2   
f2(a) { 
              a = a + f3(a); return a;} 
f3(a) { 
              a = a + 1;       return a;}   

69

Nested Procedures



Computer Architecture

f1: 
     f2’s argument in $a0 to $a3  
     jal f2  
… 
f2: 
     f3’s argument in $a0 to $a3  
     jal f3   
…

70

Nested Procedures



Computer Architecture

f1: 
  PC:   f2’s argument in $a0 to $a3  
  PC+4: jal f2                     // $ra = PC+8  
… 
f2: 
  PC+100: f3’s argument in $a0 to $a3  
  PC+104: jal f3              // $ra = PC+108  
                                                                              f3: …                  
...                                                                                jr $ra

71

Nested Procedures



Computer Architecture

f1: 
  PC:   f2’s argument in $a0 to $a3  
  PC+4: jal f2                     // $ra = PC+8  
… 
f2: 
  PC+100: f3’s argument in $a0 to $a3  
  PC+104: jal f3              // $ra = PC+108  
  jr $ra ☹     Oh no!!                                           f3: …                  
...                                                                                jr $ra

72

Nested Procedures



caller registers 
callee registers  

Why?  
Callee does not know, registers used by callers, can be 
many callers too    
Caller does not know the callee’s plan ☺                           

Nested Procedures



• Push all the other registers that must be preserved onto the stack 

• Caller pushes any argument registers ($a0–$a3) or temporary 
registers ($t0–$t9) that are needed after the call.  

• Callee pushes the return address register $ra and any saved 
registers ($s0–$s7) used by the callee.  

• The $sp is adjusted to account for the number of registers put 
on the stack. 

• Everything is restored after the call                           

What to do?



Computer Architecture

The loaded program 

• System program that loads the executable into the memory.  

• Every executable has a  text, heap/stack data segments
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MIPS way of handling it:  
The Stack (part of DRAM, for each function call) 

Stores caller data

$sp (stack pointer) points to the address where stack ends 
One per function, private memory area, else the same problem ☹  

Stack grows down
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MIPS way of handling it: Before function call 

78

sp Caller
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MIPS way of handling it: Function call is ON
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sp

Caller R1

Callee R2

Callee R4 Saved
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MIPS way of handling it: After the function call
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sp Caller R1



Nested Functions (Remember main()  is a 
function too ☺ )
CS230 // jal cs230 
{ 
     CS330 // jal cs330 
       {  
           CS430 // jal cs430  
            { 
            } //jr  
        } //jr 
} // jr
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The final one: Frame pointer

• Stack also stores local variables and data structures (local arrays and structures) for a function along 
with the return address(es).  

• Frame pointer ($fp) will get incremented and decremented based on the local arguments used. 
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The final one: Frame pointer
Frame pointer: Points to local variables and saved registers. Points to the highest address in the 
function frame. Stays there throughout the procedure. Stack pointer, moves around.  
 

sp
regs.

fp returns

sp

fp

sp

fp

local



A Complete Example: Recursion
fact: 
    addi $sp, $sp, -8         # make space for ra and n 
    sw $ra, 4($sp)            # save return address 
    sw $a0, 0($sp)            # save n 

    slti $t0, $a0, 1          # t0 = 1 if n < 1 
    beq $t0, $zero, RECURSE   # if n >= 1, do recursion 

    li $v0, 1                 # base case: return 1 
    addi $sp, $sp, 8          # deallocate stack 
    jr $ra                    # return 

RECURSE: 
    addi $a0, $a0, -1         # n - 1 
    jal fact                  # recursive call 

    lw $a0, 0($sp)            # restore n 
    mul $v0, $a0, $v0         # n * fact(n - 1) 
    lw $ra, 4($sp)            # restore return address 
    addi $sp, $sp, 8          # deallocate stack 
    jr $ra                    # return 

int fact (int n) {  
if (n < 1) return (1);  
else return (n * fact(n – 1)); }
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• Do you notice something unusual??
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• Can you tell me why there I do not 
lw the $ra in the base case???  
•  $ra does not change in 
the base case



Interpreting Instructions



Computer Architecture

Why to Interpret?

• Everything is a string of bits… 

• Instructions are 32 bit strings 

• How do the hardware know what is $lw and 
what is $addi 

• Unique bit string for each of them 

• But how does the machine interpret them?
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Decode it …

• Everything is a string of bits… 

• Instructions are 32 bit strings 

• How do the hardware know what is $lw and 
what is $addi 

• Unique bit string for each of them 

• But how does the machine interpret them?
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Instruction Decoding
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op rs rt Immediate

6 bits, maximum  
64 operations 
add 
sub 
mul 
lw 
bne …….

5 bits, 32 registers 
(R0 to R31)

16 bit constant 

031

5 bits, 32 registers (R0 to R31)

2126 16
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Let’s have a look
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rs rt functop rd shamt
031 2126 16 611

rs rt Immediateop
031 2126 16

Target jump addressop
031 26

R-type

I-type

J-type



Good design demands good compromises
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MIPS encoding Anatomy
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rs rt functop rd shamt

Why this field?  
Wastage of space ☹ 



Why not?
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rs rtop+funct rd shamt
031 20 15 510

rs rt Immediateop
031 2126 16

Target jump addressop
031 26

R-type

I-type

J-type



Potential Causes: Simple is The Best
• Every instruction looks the same 

• Same number of bits for the op for all the 
instruction 

• All the fields starts from the same location 

• Uniform treatment for all instructions make the 
decoder hardware simple: 
• Believe me, you can save some MUXs 



Addressing Modes
• Where is your data?? 



Addressing Modes

• Data is packed within instruction 
• addi $t0, $t0, 3 



Addressing Modes

• Data is inside a register 
• add $t0, $t1, $s0 



Addressing Modes

• Data is in memory 
• Address is the sum of a register value + offset specified in the instruction. 
• lw $t0, 4($s0), lw $t0,($s0) 

• lw/sw have many versions for accessing byte halfword and word. 
• Great for accessing arrays, structures, and with pointers 



Addressing Modes

• Conditional branches 
• The address field basically specifies an offset 
• Adds a 16-bit address (sign extended to 26 bit and shifted left  by 2 bits ) to the 

PC  
• beq $t0, $zero, RECURSE 



Addressing Modes

• Again for branching 
• jal label  

• Concatenates a 26-bit address shifted left  2 bits with the 4 upper bits of the PC 
• Why? 



Addressing Modes

• Again for branching 
• jal label  

• Concatenates a 26-bit address shifted left  2 bits with the 4 upper bits of the PC 
• Why? 
• Remember word alignment of memory?????? 

• 26 shifted by 2 bit is 28 bits with two zeros at the end — always divisible by 4 
• You can address  bits = 256 MB 
• Add the upper 4 bits of PC — can access several 256 MB chunks.. 
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