
Digital Logic
Design + Computer
Architecture
Sayandeep Saha

Assistant Professor
Department of Computer
Science and Engineering
Indian Institute of Technology
Bombay

Instruction Set Architecture

How to talk to a Computer?
• Computers can be given “instructions”

• We have a set of instructions for every computer —

called instruction set

• When you write a program, you write

instructions..

• More details later…

• Every instruction some hardware circuit

implemented inside the processor to get its job

done.

• Instruction Set Architecture: specifies the set of

instructions a processor understands, their encoding,

how they access memory etc…

Image generated by ChatGPT

What happens when you write a program
• Say we write:

• a = b + c;

• There is a software program called compiler

• Takes our code and encodes in terms of the

instructions available for the computer

• add reg1, reg2, reg3

• There is another program called assembler which

converts the instruction (sequence) to bits

• 0101110000110101

Image generated by ChatGPT

How to talk to a Computer?
• Instruction Set Architecture: specifies the set of

instructions a processor understands, their encoding,

how they access memory etc…

• End of the day even your ChatGPT is a

sequence of instructions (many billions or

trillions).

• Instruction set is basically an abstraction layer

• Hides the complexity of hardware from the

software designers,

• Interfaces the software and hardware.
Image generated by ChatGPT

Let’s get into the processor a bit
• It is a sequential circuit with a limited number of registers.

• It interacts with an external “memory”.

• Every instruction operates on some operands and generate

results.

• Results and operands are stored in registers.

• But they can also be in memory as the number of

registers are limited

• Note that typically such memory (called DRAM or

Dynamic Random Access Memory) is off chip —outside

the processor

• To operate, you have to bring the data from memory and

store the results back

7

Requirements

Algorithms

Prog. Lang./OS

ISA

uArch

Circuit

Device

Problem Focus

Performance Focus

BOXBOX Si fin - Body!

DrainSource

Gate

f2() {
 f3(s2, &j, &i);
 *s2->p = 10;
 i = *s2->q + i;
}

i1: ld r1, b <p1>
i2: ld r2, c <p1>
i3: ld r5, z <p3>
i4: mul r6, r5, 3 <p3>
i5: add r3, r1, r2 <p1>

f1 f2

f3

f4

f5 s q
p

j

i

fp
f3

SPEC

The Big Picture

Dissection of an Instruction
• Let’s focus on the simplistic view of the processor

add reg1, reg2, reg3

Operation Destination
reg

Source1
Reg

Source2
Reg

• Most of the arithmetic/logical instructions can take

this form — not all though

Instruction Set Architectures (ISA)
• There are many…

• Intel uses X86

• Apple uses a version of AArch64 (ARM)

• The entire world of embedded processors like ST-Microelectronics uses ARM

• Now RISC-V is becoming a mainstream trend.

• We shall study MIPS — a simple to understand ISA

Instruction Set Architectures (ISA)
• We shall study MIPS — a simple to understand ISA

• Great for beginning…

• Similar to ARM

• Still in use in the embedded devices

• Your smart card

• Modems

• Bitcoin-wallets

Now let’s write some MIPS
• We shall name the registers as $0, $1, or $a0, $g1

etc…

• Now we shall try something a bit more complex…

add reg1, reg2, reg3

add $0, $1, $2

Now let’s write some MIPS
• Let’s compute: a = b+c-d

• No idea? — get idea :P
add reg1, reg2, reg3

add $0, $1, $2

Now let’s write some MIPS
• Let’s compute: a = b+c-d

• Assume we have add and sub instructions taking two

sources and one destination register

add $0, $1, $2

sub $0, $1, $2

Now let’s write some MIPS
• Let’s compute: a = b+c-d

• Assume we have add and sub instructions taking two

sources and one destination register

add $0, $1, $2

• First’ let’s simplify :

• t = b+c

• a = t-d

• Now, I can map to instructions..

• add $r0, $r1, $r2 //t = b+c

• sub $d0, $r0, $r3 //a = t-d

sub $0, $1, $2

• Observe: I use a temporary register…

Now let’s write some MIPS
• Let’s try: f = (g+h)-(i+j)

Now let’s write some MIPS
• Let’s try: f = (g+h)-(i+j)

• add $r0, $r1, $r2 //x = g+h

• add $r3, $r4, $r5 //y = i+j

• Sub $r0, $r0, $r3 //f = x-y

• Food of thought: Well, do I really need to reuse

registers???

Ok…A Few MIPS Details…
• We have 32 registers in the processor

• So we have to reuse registers, no other option…

• Typically, registers are 32-bits…

• But why don’t we have infinite number of registers

• Well, every piece of register is a real hardware…

• But: Why 32??

Ok…A Few MIPS Details…
• We have 32 registers in the processor

• So we have to reuse registers, no other option…

• Typically, registers are 32-bits…

• Each instruction also encoded in 32 bits

• But why don’t we have infinite number of registers

• Well, every piece of register is a real

hardware…

• But: Why 32??

The choice depends on several factors, like the speed of

the execution, the usage and size of memory, the size of

code, the encoding and decoding of instructions….It’s

not a random choice…

Immediate Instructions…
• b = a + 7

• We don’t need a register for the constant…

• Can you tell me why?? Just guess…addi $r0, $r1, 7

Immediate Instructions…
• b = a + 7

• We don’t need a register for the constant…

• Can you tell me why?? Just guess…addi $r0, $r1, 7

• i stands for ‘immediate’

• The constant is in 2’s complement form and of 16 bits.

• Question: Do I need a subi instruction??

Zero Is Very Special in Our Life…
• MIPS has a register which is called $zero

• It stores 0

• What is the purpose?

• Well, a lot…you will see

• A simple use of $zero

add $r1, $r0, $zero // a = b

• But again, why???

Zero Is Very Special in Our Life…
• MIPS has a register which is called $zero

• It stores 0

• What is the purpose?

• Well, a lot…you will see

• A simple use of $zero

add $r1, $r0, $zero // a = b

• But again, why??? — just not needed

a=b….The Pseudo-Instructions
• You can still write…

move $r1, $r0 // a = b

• But it is a pseudo-instruction

• Internally it converts to add

• Once again an engineering choice

• There are many such pseudo-instructions. See:

https://en.wikibooks.org/wiki/MIPS_Assembly/Pseudoinstructions

https://en.wikibooks.org/wiki/MIPS_Assembly/Pseudoinstructions

Logical Instructions
• Your good old Boolean algebra

• Remember: These are bitwise operations…

• Treats the operands as bit strings instead of numbers

Logical Instructions
• Your good old Boolean algebra

• Remember: These are bitwise operations…

• Treats the operands as bit strings instead of numbers

Critical Thinking…
• We have seen that constants are 16 bits…

• But registers are 32-bits…

• How to store a 32-bit constant in a register???

• Let’s say the constant is:

• 11110000000000001111111111111111

• In Hex: 0xF000FFFF

• Info: You have the following new instruction:

• lui $r0, const // loads cosnt in the upper 16 bits of the

register $r0

Critical Thinking…
• Think, how the data will be represented inside your register…

• Initially The register $r0 is at (simplifying assumption…does not matter)

• Now do: lui $r0, 0xF000

• Now do, addi $r0, 0xFFFF

1111000000000000 1111111111111111
MSB LSB

0000000000000000 0000000000000000
MSB LSB

1111000000000000 0000000000000000
MSB LSB

1111000000000000 1111111111111111
MSB LSB

• You can also do ori

How to Use Your Memory??
• Recall, that MIPS only have 32 registers.

• Have you ever cared about counts while declaring

variables in your program? — No way…

• Then how things work?

• How can every program fits itself in 32

registers?

• Solution:

• Just store things in an external memory

• Fetch the data to registers whenever it is required

• Store the results after processing.

• But still something is missing here…What is

that??

How to Use Your Memory??

• Name this person?

How to Use Your Memory??

• Name this person?

• John Luis von Neumann

How to Use Your Memory??

● In the old days, “programming” involved actually changing a machine’s
physical configuration:
− by flipping switches or connecting wires.
− Memory only stored data that was being operated on.

● Then around 1944, John von Neumann and others got the idea to
encode instructions in a format that could be stored in memory just
like data. — Stored program paradigm
− The processor interprets and executes instructions from memory

How to Use Your Memory??

● In the old days, “programming” involved actually changing a machine’s
physical configuration:
− by flipping switches or connecting wires.
− Memory only stored data that was being operated on.

● Then around 1944, John von Neumann and others got the idea to
encode instructions in a format that could be stored in memory just
like data. — Stored program paradigm
− The processor interprets and executes instructions from memory

How to Use Your Memory??

● Load-Store Architecture:
● Load your data to process
● Store it back…

● Instructions are handled in a slightly different
manner….will come to that…

Memory Instructions

Memory Instructions
● Load-Store Architecture:

● Load your data to process
● Store it back…

● Instructions are handled in a slightly different
manner….will come to that…

● But, a critical question:
● How do you know where to find the data inside

memory?

● But, a critical question:
● How do you know where to find the data inside

memory?
● Memory has addresses
● Think it like a large contiguous array…
● Every byte in memory has an unique

address
● Byte-addressable

● BTW, each address is 32-bit in MIPS

Memory Instructions

● The lw is interpreted as “load word”
● MIPS also have other variants like “load byte” (lb)

● Data comes in $t0.
● But what is the 1($a0) part signify?

● $a0 is the base address of the location you want to
read from memory

● 1 is called the offset.
● But why don’t you read directly?

Memory Instructions

● The lw is interpreted as “load word”
● MIPS also have other variants like “load byte” (lb)

● Data comes in $t0.
● But what is the 1($a0) part signify?

● $a0 is the base address of the location you want to
read from memory

● 1 is called the offset.
● But why don’t you read directly?

● Again a design choice, to ease compilation,
programming, and hardware design…

Memory Instructions

● lw is interpreted as “load word”
● lb is “load byte”
● For the lw, we need the base+offset ($s0 + 1) to be

always divisible by 4 — word alignment
● Why?
● Nothing such for lb

Memory Instructions: Word vs. Byte
lw $t0, 1($s0) lb $t0, 1($s0)

● What Lies Beneath?
● lb just read the byte in the calculated address
● lw reads four consecutive bytes starting from the

calculated address.
● Why word alignment — again, it simplifies hardware

OS, compiler….

● lw is interpreted as “load word”
● lb is “load byte”
● For the lw, we need the base+offset ($s0 + 1) to be

always divisible by 4 — word alignment
● Why?
● Nothing such for lb

Memory Instructions: Word vs. Byte
lw $t0, 1($s0) lb $t0, 1($s0)

● What Lies Beneath?
● lb just read the byte in the calculated address
● lw reads four consecutive bytes starting from the

calculated address.
● Why word alignment — again, it simplifies hardware

OS, compiler….

Endianness (Byte ordering within a word)

41

• Big Endian: address of most significant byte = word address
(xx00 = Big end of word), MIPS

• Little Endian:	address of least significant byte = word address
(xx00 = Little end of word), x86

msb lsb3 2 1 0
little endian byte 0

0 1 2 3 big endian byte 0

Just for an example, do not take it for granted …

42

unsigned int i = 1;
char *c = (char*)&i; // reading the LSB
Printf (“%d”, *c);

unsigned int i = 12345678;
char *c = (char*)&i;
Printf (“%d”, *c);

Computer Architecture

Example

43

unsigned int i = 1;
char *c = (char*)&i; // reading the LSB
Printf (“%d”, *c);
Little endian: 1
Big endian: 0
 unsigned int i = 12345678;

char *c = (char*)&i;
Printf (“%d”, *c);
Little endian: 78
Big endian: 12

● Ok, Von Neumann said, data and code both are stored in the
same memory.
● In practice, this may lead to an issue — at a specific interval

of time, you can either fetch a data or an instruction.
● Affects parallelisation

● What if you separate the data and instruction memory and
buses?
● That is called Harvard Architecture.
● Modern commercial systems use a combination of both

● RAM stores both instruction and data
● But there are other intermediate memory (caches) which

are separated for instruction and data

Another Important Point…

Source: Internet

Load, Store Cheatsheet

Load Store

Load+Store+Instruction-fetch

Program Counter
Points to the next instruction in

the memory to be fetched

● Data and instructions at the same place

● Registers are limited — 32 bit wide

● Instructions are 32 bit wide

● Registers are accessed by names

● Memory is accessed by addresses

Summary…

● If, else statements in your program…

● How they are interpreted as instructions??

Decision Making…

Decision Making…

Simple Example…
● Let’s compile:

● if (i == j) f = g + h; else f = g - h;

$s0 has i, $s1 has j, $s2 has g, $s3 has h, $s4 has f

Assume:

 beq $s0, $s1, if_equal # if i == j, jump to if_equal
 sub $s4, $s2, $s3 # else: f = g - h
 j end_if # jump to end
if_equal:
 add $s4, $s2, $s3 # f = g + h
end_if:

Unconditional Jump

jumps to a specific label

Decision Making…
● So you can check conditions:

● If (x = 0)..
● If (x != 0)..
● If (x = y)..
● If (x != y)…

● But how about the following code??

Decision Making…

● Set on less than (slt)
●

● After using slt, we can use the beq or bne

Simple Example…
● Let’s compile:

● if (i < j) f = g + h; else f = g - h;

$s0 has i, $s1 has j, $s2 has g, $s3 has h, $s4 has f

Assume:

 slt $t0, $s0, $s1 # $t0 = 1 if i < j
 beq $t0, $zero, ELSE # if $t0 == 0, i >= j, jump to ELSE
 add $s4, $s2, $s3 # f = g + h
 j END_IF # jump to END_IF
ELSE:
 sub $s4, $s2, $s3 # f = g - h
END_IF:

Dealing With Loops
● Let’s first see how we deal with arrays…

● f = h + A[8]

• $t0 has A[8], $s5 has base address of the array A, $s4 has f, $s3 has h

• Also assume “A[8]” as uint8_t (a byte)

Assume:

 lbu $t0, 8($s5) # Load word A[8] with byte offset
 add $s4, $s3, $t0 # f = h + A[8]

• But what is “A[8]” is int (4 bytes)?????

 lw $t0, 32($s5) # Load A[8], 8 * 4 = 32 (word)offset
 add $s4, $s3, $t0 # f = h + A[8]

Dealing With Loops
● Let’s consider:

● while (A[i] > k) i = i+1;

$s0 has i,
$t1 has address of A[i]
$t2 has A[i]
$s6 has k

Assume: LOOP:
 sll $t1, $s0, 2 # $s0 = i, i*4 for word offset
 add $t1, $s5, $t1 # Compute address A[i]
 lw $t2, 0($t1) # Load A[i] (integer)
 slt $t3, $t2, $s6 # $t3 = 1 if A[i] < k
 bne $t3, $zero, END_LOOP # if A[i] < k, exit loop
 addi $s0, $s0, 1 # i = i + 1
 j LOOP
END_LOOP:

Performs left logical shift by two bits..why??

Dealing With Loops
● What happens if:

● while (A[i] == k) i = i+1;

$s0 has i,
$t1 has address of A[i]
$t2 has A[i]
$s6 has k

Assume:

Dealing With Loops
● What happens if:

● while (A[i] == k) i = i+1;

$s0 has i,
$t1 has address of A[i]
$t2 has A[i]
$s6 has k

Assume:
 LOOP:
 sll $t1, $s0, 2 # $s0 = i, i*4 for word offset
 add $t1, $s5, $t1 # Compute address A[i]
 lw $t2, 0($t1) # Load A[i] (integer)
 bne $t2, $s6, END_LOOP # if A[i] != k, exit loop
 addi $s0, $s0, 1 # i = i + 1
 j LOOP
END_LOOP:

● What happens if:
● while (A[i] == k) i = i+1;

$s0 has I,
$t1 has address of A[i]
$t2 has A[i]
$s6 has k

Assume: LOOP:
 sll $t1, $s0, 2 # $s0 = i, i*4 for word offset
 add $t1, $s5, $t1 # Compute address A[i]
 lw $t2, 0($t1) # Load A[i] (integer)
 bne $t2, $s6, END_LOOP # if A[i] != k, exit loop
 addi $s0, $s0, 1 # i = i + 1
 j LOOP
END_LOOP:

More on Jumping…

• Normally:
• PC, PC+4, PC+8,….
• But jump instruction loads a new value to the PC

• It’s the offset in the program where the exception should divert (the label is basically that)

● What happens if:
● while (A[i] == k) i = i+1;

$s0 has I,
$t1 has address of A[i]
$t2 has A[i]
$s6 has k

Assume: LOOP:
 sll $t1, $s0, 2 # $s0 = i, i*4 for word offset
 add $t1, $s5, $t1 # Compute address A[i]
 lw $t2, 0($t1) # Load A[i] (integer)
 bne $t2, $s6, END_LOOP # if A[i] != k, exit loop
 addi $s0, $s0, 1 # i = i + 1
 j LOOP
END_LOOP:

More on Jumping…

• Normally:
• PC, PC+4, PC+8,….
• But jump instruction loads a new value to the PC

• It’s the offset in the program where the exception should divert (the label is basically that)
• But jumping is even more exotic…Let’s see why

More on Jumping…

More on Jumping…Working with Functions
• Anatomy of a Function Call:

• Put parameters in a place where the function can
access them.

• Transfer control to the function.
• Acquire the storage resources needed for the

function.
• Perform the desired task.
• Put the result value in a place where the caller

program can access it.
• Return control to the point of origin, since a

function can be called from several points in a
program.

int sum(int a, int b)
{
 int c=a+b;
 return c;
}
void main (void)
{
 int i=1;
 int j=2;
 int k = sum(i,j);
 // …..
}

Function call
jumps to a
location in
your code

• Caller: One who calls the function
• Callee: The function which is being called

Working with Functions — The MIPS Case
• MIPS Support for Function Call:

• $a0–$a3: four argument registers in which to
pass parameters

• $v0–$v1: two value registers in which to return
values

• $ra: one return address register to return to the
point of origin

• Ways of Jumping..:

• jal Label: Jump and link

• jr $ra: Jump back to the return address stored
in $ra

Working with Functions — The MIPS Case
• Ways of Jumping..:

• jal Label:

• First, save PC+4 in $ra

• The instruction to be executed next is at Label

• jr $ra: Jump back to the return address stored in $ra
(PC + 4)

Working with Functions — The MIPS Case
Complete Picture

sum:
 PC+100: addi $v0, $a0, 4 # c = a + 4, return in $v0
 PC+104: jr $ra # return to PC+12

main:
 PC+4: li $a0, 2 # i = 2
 PC+8: jal sum # call sum(i); $ra = PC+12
 PC+12: addi $s1, $v0, 0 # k = return value (k = 6)

int sum(int a)
{
 int c=a+4;
 return c;
}
void main (void)
{
 int i=2;
 int k = sum(i);
}

Working with Functions — The MIPS Case
• MIPS Support for Function Call:

• $a0–$a3: four argument registers in which to
pass parameters

• $v0–$v1: two value registers in which to return
values

• $ra: one return address register to return to the
point of origin

• Ways of Jumping..:

• jal Label: Jump and link

• jr $ra: Jump back to the return address stored
in $ra

Functions — More Parameters

int leaf_example (int g, int h, int i, int j, int k)
{

int f;
f = (g + h) – (i + j) + k;
return f;
}

void main (void)
{
 int g=2;
 int h=3;
 int i=1;
 int j=1;
 int k=3;
 int l = leaf_example(g,h,i,j,k);
}

• What if there are more than 4 parameters?

• What if the function needs more registers (beyond two
return registers) to operate?

• Remember: caller must have its state restored after
callee finishes.

Functions — More Parameters

int leaf_example (int g, int h, int i, int j,
int k)
{

int f;
f = (g + h) – (i + j) + k;
return f;
}

void main (void)
{
 int g=2;
 int h=3;
 int i=1;
 int j=1;
 int k=3;
 int l = leaf_example(g,h,i,j,k);
}

leaf_example:
 addi $sp, $sp, -8 # make space for s0, t0
 sw $s0, 4($sp) # save s0
 sw $t0, 0($sp) # save t0

 add $s0, $a0, $a1 # s0 = g + h
 add $t0, $a2, $a3 # t0 = i + j
 sub $v0, $s0, $t0 # v0 = (g + h) - (i + j)
 add $v0, $v0, $t2 # v0 += k (f = ... + k)

 lw $t0, 0($sp) # restore t0
 lw $s0, 4($sp) # restore s0
 addi $sp, $sp, 8 # deallocate stack
 jr $ra # return

What is this
trick?

Stack — What is it?
• A region in DRAM
• Grows in the lower direction
• Push and Pop are the main operations
• Stack pointer: A special register

• A value denoting the most recently allocated
address in a stack that shows where registers
should be spilled or where old register values
can be found.

Functions — More Parameters

leaf_example:
 addi $sp, $sp, -8 # make space for s0, t0
 sw $s0, 4($sp) # save s0
 sw $t0, 0($sp) # save t0

 add $s0, $a0, $a1 # s0 = g + h
 add $t0, $a2, $a3 # t0 = i + j
 sub $v0, $s0, $t0 # v0 = (g + h) - (i +
j)
 add $v0, $v0, $t2 # v0 += k (f = ... + k)

 lw $t0, 0($sp) # restore t0
 lw $s0, 4($sp) # restore s0
 addi $sp, $sp, 8 # deallocate stack
 jr $ra # return

What is this
trick?• MIPS Support for Function Call:

• We need registers beyond $a3

• Use other registers $s0, $t0

• But the caller function might be already have
some values in them.

• Solution: store them in memory (stack) before
using in the function.
• Restore back before exiting

• This idea of saving registers is called register
spilling

Computer Architecture

main(){
a = a + f1(a);
} f1:
f1(a) { f2’s argument in $a0 to $a3
 a = a - f2(a); return a;} jal f2
f2(a) {
 a = a + f3(a); return a;}
f3(a) {
 a = a + 1; return a;}

69

Nested Procedures

Computer Architecture

f1:
 f2’s argument in $a0 to $a3
 jal f2
…
f2:
 f3’s argument in $a0 to $a3
 jal f3
…

70

Nested Procedures

Computer Architecture

f1:
 PC: f2’s argument in $a0 to $a3
 PC+4: jal f2 // $ra = PC+8
…
f2:
 PC+100: f3’s argument in $a0 to $a3
 PC+104: jal f3 // $ra = PC+108
 f3: …
... jr $ra

71

Nested Procedures

Computer Architecture

f1:
 PC: f2’s argument in $a0 to $a3
 PC+4: jal f2 // $ra = PC+8
…
f2:
 PC+100: f3’s argument in $a0 to $a3
 PC+104: jal f3 // $ra = PC+108
 jr $ra ☹ Oh no!! f3: …
... jr $ra

72

Nested Procedures

caller registers
callee registers

Why?
Callee does not know, registers used by callers, can be
many callers too
Caller does not know the callee’s plan ☺

Nested Procedures

• Push all the other registers that must be preserved onto the stack

• Caller pushes any argument registers ($a0–$a3) or temporary
registers ($t0–$t9) that are needed after the call.

• Callee pushes the return address register $ra and any saved
registers ($s0–$s7) used by the callee.

• The $sp is adjusted to account for the number of registers put
on the stack.

• Everything is restored after the call

What to do?

Computer Architecture

The loaded program

• System program that loads the executable into the memory.

• Every executable has a text, heap/stack data segments

75

MIPS way of handling it:
The Stack (part of DRAM, for each function call)

Stores caller data

$sp (stack pointer) points to the address where stack ends
One per function, private memory area, else the same problem ☹

Stack grows down

Computer Architecture 77

Computer Architecture

MIPS way of handling it: Before function call

78

sp Caller

Computer Architecture

MIPS way of handling it: Function call is ON

79

sp

Caller R1

Callee R2

Callee R4 Saved

Computer Architecture

MIPS way of handling it: After the function call

80

sp Caller R1

Nested Functions (Remember main() is a
function too ☺)
CS230 // jal cs230
{
 CS330 // jal cs330
 {
 CS430 // jal cs430
 {
 } //jr
 } //jr
} // jr

Computer Architecture

The final one: Frame pointer

• Stack also stores local variables and data structures (local arrays and structures) for a function along
with the return address(es).

• Frame pointer ($fp) will get incremented and decremented based on the local arguments used.

82

The final one: Frame pointer
Frame pointer: Points to local variables and saved registers. Points to the highest address in the
function frame. Stays there throughout the procedure. Stack pointer, moves around.

sp
regs.

fp returns

sp

fp

sp

fp

local

A Complete Example: Recursion
fact:
 addi $sp, $sp, -8 # make space for ra and n
 sw $ra, 4($sp) # save return address
 sw $a0, 0($sp) # save n

 slti $t0, $a0, 1 # t0 = 1 if n < 1
 beq $t0, $zero, RECURSE # if n >= 1, do recursion

 li $v0, 1 # base case: return 1
 addi $sp, $sp, 8 # deallocate stack
 jr $ra # return

RECURSE:
 addi $a0, $a0, -1 # n - 1
 jal fact # recursive call

 lw $a0, 0($sp) # restore n
 mul $v0, $a0, $v0 # n * fact(n - 1)
 lw $ra, 4($sp) # restore return address
 addi $sp, $sp, 8 # deallocate stack
 jr $ra # return

int fact (int n) {
if (n < 1) return (1);
else return (n * fact(n – 1)); }

1

A Complete Example: Recursion
fact:
 addi $sp, $sp, -8 # make space for ra and n
 sw $ra, 4($sp) # save return address
 sw $a0, 0($sp) # save n

 slti $t0, $a0, 1 # t0 = 1 if n < 1
 beq $t0, $zero, RECURSE # if n >= 1, do recursion

 li $v0, 1 # base case: return 1
 addi $sp, $sp, 8 # deallocate stack
 jr $ra # return

RECURSE:
 addi $a0, $a0, -1 # n - 1
 jal fact # recursive call

 lw $a0, 0($sp) # restore n
 mul $v0, $a0, $v0 # n * fact(n - 1)
 lw $ra, 4($sp) # restore return address
 addi $sp, $sp, 8 # deallocate stack
 jr $ra # return

int fact (int n) {
if (n < 1) return (1);
else return (n * fact(n – 1)); }

1

2

A Complete Example: Recursion
fact:
 addi $sp, $sp, -8 # make space for ra and n
 sw $ra, 4($sp) # save return address
 sw $a0, 0($sp) # save n

 slti $t0, $a0, 1 # t0 = 1 if n < 1
 beq $t0, $zero, RECURSE # if n >= 1, do recursion

 li $v0, 1 # base case: return 1
 addi $sp, $sp, 8 # deallocate stack
 jr $ra # return

RECURSE:
 addi $a0, $a0, -1 # n - 1
 jal fact # recursive call

 lw $a0, 0($sp) # restore n
 mul $v0, $a0, $v0 # n * fact(n - 1)
 lw $ra, 4($sp) # restore return address
 addi $sp, $sp, 8 # deallocate stack
 jr $ra # return

int fact (int n) {
if (n < 1) return (1);
else return (n * fact(n – 1)); }

1

2

3

A Complete Example: Recursion
fact:
 addi $sp, $sp, -8 # make space for ra and n
 sw $ra, 4($sp) # save return address
 sw $a0, 0($sp) # save n

 slti $t0, $a0, 1 # t0 = 1 if n < 1
 beq $t0, $zero, RECURSE # if n >= 1, do recursion

 li $v0, 1 # base case: return 1
 addi $sp, $sp, 8 # deallocate stack
 jr $ra # return

RECURSE:
 addi $a0, $a0, -1 # n - 1
 jal fact # recursive call

 lw $a0, 0($sp) # restore n
 mul $v0, $a0, $v0 # n * fact(n - 1)
 lw $ra, 4($sp) # restore return address
 addi $sp, $sp, 8 # deallocate stack
 jr $ra # return

int fact (int n) {
if (n < 1) return (1);
else return (n * fact(n – 1)); }

1

2

3

4

• Do you notice something unusual??

A Complete Example: Recursion
fact:
 addi $sp, $sp, -8 # make space for ra and n
 sw $ra, 4($sp) # save return address
 sw $a0, 0($sp) # save n

 slti $t0, $a0, 1 # t0 = 1 if n < 1
 beq $t0, $zero, RECURSE # if n >= 1, do recursion

 li $v0, 1 # base case: return 1
 addi $sp, $sp, 8 # deallocate stack
 jr $ra # return

RECURSE:
 addi $a0, $a0, -1 # n - 1
 jal fact # recursive call

 lw $a0, 0($sp) # restore n
 mul $v0, $a0, $v0 # n * fact(n - 1)
 lw $ra, 4($sp) # restore return address
 addi $sp, $sp, 8 # deallocate stack
 jr $ra # return

int fact (int n) {
if (n < 1) return (1);
else return (n * fact(n – 1)); }

1

2

3

4

• Can you tell me why there I do not
lw the $ra in the base case???
• $ra does not change in
the base case

Interpreting Instructions

Computer Architecture

Why to Interpret?

• Everything is a string of bits…

• Instructions are 32 bit strings

• How do the hardware know what is $lw and
what is $addi

• Unique bit string for each of them

• But how does the machine interpret them?

90

Computer Architecture

Decode it …

• Everything is a string of bits…

• Instructions are 32 bit strings

• How do the hardware know what is $lw and
what is $addi

• Unique bit string for each of them

• But how does the machine interpret them?

91

Computer Architecture

Instruction Decoding

92

op rs rt Immediate

6 bits, maximum
64 operations
add
sub
mul
lw
bne …….

5 bits, 32 registers
(R0 to R31)

16 bit constant

031

5 bits, 32 registers (R0 to R31)

2126 16

Computer Architecture

Let’s have a look

93

rs rt functop rd shamt
031 2126 16 611

rs rt Immediateop
031 2126 16

Target jump addressop
031 26

R-type

I-type

J-type

Good design demands good compromises

94

Computer Architecture

MIPS encoding Anatomy

95

rs rt functop rd shamt

Why this field?
Wastage of space ☹

Why not?

96

rs rtop+funct rd shamt
031 20 15 510

rs rt Immediateop
031 2126 16

Target jump addressop
031 26

R-type

I-type

J-type

Potential Causes: Simple is The Best
• Every instruction looks the same

• Same number of bits for the op for all the
instruction

• All the fields starts from the same location

• Uniform treatment for all instructions make the
decoder hardware simple:
• Believe me, you can save some MUXs

Addressing Modes
• Where is your data??

Addressing Modes

• Data is packed within instruction
• addi $t0, $t0, 3

Addressing Modes

• Data is inside a register
• add $t0, $t1, $s0

Addressing Modes

• Data is in memory
• Address is the sum of a register value + offset specified in the instruction.
• lw $t0, 4($s0), lw $t0,($s0)

• lw/sw have many versions for accessing byte halfword and word.
• Great for accessing arrays, structures, and with pointers

Addressing Modes

• Conditional branches
• The address field basically specifies an offset
• Adds a 16-bit address (sign extended to 26 bit and shifted left by 2 bits) to the

PC
• beq $t0, $zero, RECURSE

Addressing Modes

• Again for branching
• jal label

• Concatenates a 26-bit address shifted left 2 bits with the 4 upper bits of the PC
• Why?

Addressing Modes

• Again for branching
• jal label

• Concatenates a 26-bit address shifted left 2 bits with the 4 upper bits of the PC
• Why?
• Remember word alignment of memory??????

• 26 shifted by 2 bit is 28 bits with two zeros at the end — always divisible by 4
• You can address bits = 256 MB
• Add the upper 4 bits of PC — can access several 256 MB chunks..

228

Addressing Modes

• Again for branching
• jal label

• Concatenates a 26-bit address shifted left 2 bits with the 4 upper bits of the PC
• Why?
• Remember word alignment of memory??????

• 26 shifted by 2 bit is 28 bits with two zeros at the end — always divisible by 4
• You can address bits = 256 MB
• Add the upper 4 bits of PC — can access several 256 MB chunks..

228

