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CPU Datapath



What is “Datapath” for a Processor?
• Same as the datapath control split we studied for GCD 

processor. 

• Datapath processes the data 

• Controller tells how to process the data 

• But here it’s for processing the instructions in an ISA 

• A datapath that can process all the instructions in an 

ISA

Image generated by ChatGPT 



Datapath Elements
• We shall begin with the simplest case 

• Every instruction finishes in one clock cycle 

• The clock frequency is determined by the instruction 

finishes last 

• Remember, again how we constructed the GCD datapath 

• Let’s first identity what are the components needed

Image generated by ChatGPT 



Datapath Elements
• Remember, again how we constructed the GCD 

datapath 

• Let’s first identity what are the components needed

Image generated by ChatGPT 
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32
rd1

RegFile

32rd2

Write Enable (a.k.a. register write)
32

wd

5 rs1
5 rs2
5 ws

rs1 and rs2: Read register 1 and 2

ws: Write register
wd: Write data

Datapath Elements: Register File
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Datapath Elements: The ALU

32

ALU

32

32

op • All arithmetic and logical operation happens here 

• Operation selection 

• E.g., 

• Op = 0: Y = A+B 

• OP = 1: Y = A- B 

• OP = 2; Y = A*B
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Datapath Elements: Program Counter

• Remember PC register?? 

• It always points to the next instruction to be executed… 

• But where is the next instruction???
3232

PC



9

Datapath Elements: Instruction Memory

32

Addr.

Instruction

32

Instr.
Mem

Remember: No writes to 
instruction memory 

Not concerned about how 
programs are loaded into this 
memory.
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Datapath Elements: Data Memory

32

Addr.

data

32

Data
Mem

data

32

Memory Read/Write Why data and instruction memory and not one memory?  
• Recall Harvard vs. Von Neuman 
• Not so simple matter, will discuss later. 
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Datapath Elements: Data Memory
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Addr.

data

32

Data
Mem

data

32

Memory Read/Write Why data and instruction memory and not one memory?  
• Recall Harvard vs. Von Neuman 
• Not so simple matter, will discuss later. 
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Datapath Elements: Buses

• Same as your public transport 

• Transfer data and instructions 

• Separate buses for address and data 
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Datapath Elements: Buses

• Same as your public transport 

• Transfer data and instructions 

• Separate buses for address and data 

• Why??? 
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Datapath Elements: Timing Diagram

• Every clock cycle we process one 

instruction (super simple) 

• Sending the PC and getting the instruction 

from memory is called Instruction Fetch 

32

Addr

Inst.

32

Instr
Mem

Fetching straight-line MIPS instructions requires a 
machine that generates this timing diagram:

CLK

Addr

Data IMem[PC + 8]IMem[PC + 4]IMem[PC]

PC + 8PC + 4PC

PC == Program Counter, points to next instruction.
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Datapath Elements: Decoding Instructions
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WE32
wd
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5
ws

opcode rs rt rd functshamt

Decode fields to get : ADD $8 $9 $10  
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Datapath Elements: Decoding Instructions

32
rd1

RegFile

32
rd2

WE32
wd

5
rs1

5
rs2

5
ws

opcode rs rt rd functshamt

Decode fields to get : ADD $8 $9 $10  
Logic
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Datapath Elements: Executing Instructions
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rd1

RegFile

32
rd2

WE32
wd

5
rs1

5
rs2

5
ws

32AL
U

32

32

op

opcode rs rt rd functshamt

Decode fields to get : ADD $8 $9 $10  
Logic

Remember the opcode field 
is the input to the control unit
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Datapath Elements: Executing Instructions

32
rd1

RegFile

32
rd2

WE32
wd

5
rs1

5
rs2

5
ws

32AL
U

32

32

op

opcode rs rt rd functshamt

Decode fields to get : ADD $8 $9 $10  
Logic

Remember the opcode field 
is the input to the control unit
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Datapath For Instruction Fetch

32
Addr Data

Instr
Mem

32
D

PC

Q

To rs1, 
rs2, op 
decode 

logic ...
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Datapath For Instruction Fetch

32
Addr Data

Instr
Mem

32
D

PC

Q
32

32

+

32

32
0x4

To rs1, 
rs2, op 
decode 

logic ...



Computer Architecture

What about I format?

21

Sign Extension



Computer Architecture

Loads from Memory
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RegFile
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rd2

WE32
wd
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rs1
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rs2

5
ws

Syntax: LW $1, 32($2)  Action: $1 = M[$2 + 32]



Computer Architecture

Loads from Memory
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ALUsrcExtOp
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Syntax: LW $1, 32($2)  Action: $1 = M[$2 + 32]



Computer Architecture

Loads from Memory
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32
rd1

RegFile

32
rd2

WE32
wd

5
rs1

5
rs2

5
ws

ExtRegDest

ALUsrcExtOp

ALUctr

MemToReg
MemWr

Syntax: LW $1, 32($2)  Action: $1 = M[$2 + 32]

RegWr



Computer Architecture

Stores to Memory (with Load Datapath)
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32
rd1

RegFile

32
rd2

WE32
wd

5
rs1

5
rs2

5
ws

ExtRegDest

ALUsrcExtOp

ALUctr

MemToReg
MemWr

Syntax: SW $1, 32($2)  Action: M[$2 + 32] = $1 

RegWr

MemRd



Computer Architecture

Branch Instructions
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Syntax: BEQ $1, $2, 12 
Action: If ($1 != $2), PC = PC + 4  
Action: If ($1 == $2), PC = PC + 4 + 48

Clk

32

Instr  
Mem 

Addr	 Data
32

D

PC

Q

32
32

+

32

32

0x4

PCSrc

32

+
32

Ex  
te  
nd



Branch Instructions
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Syntax: BEQ $1, $2, 12 
Action: If ($1 != $2), PC = PC + 4  
Action: If ($1 == $2), PC = PC + 4 + 48

I
n



The Complete Picture

I[31-26]: Control unit



Computer Architecture

Control Signals So far

• MemRead  
• MemWrite 
• RegWrite  
• MemtoReg 
• RegDst  
• ALUop, ALUSrc 
• PCSrc

29

Read 
address

Instruction 
memory

Instruction 
[31-0]

 Control

I [31 - 26]

I [5 - 0]

RegWrite

ALUSrc

ALUOp

MemWrite

MemRead

MemToReg

RegDst

PCSrc

Zero



Computer Architecture

In Detail

• MemRead: Read from memory when assert  
• MemWrite: Write into the memory when assert  
• RegWrite: Reg. on Write register updated with the input, on assert 
• MemtoReg: On assert, memory to register, on deassert, ALU to register 
• RegDst: On assert, use rd field, on deassert use rt field  
• ALUSrc: On assert, lower 16 bits of an inst., on deassert from the 

second register  
• PCSrc: On assert, branch target, deassert, PC+4

30



Computer Architecture

Control Signal Table
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Operation RegDst RegWrite ALUSrc ALUOp MemWrite MemRead MemToReg

add 1 1 0 010 0 0 0

sub 1 1 0 110 0 0 0

and 1 1 0 000 0 0 0

or 1 1 0 001 0 0 0

slt 1 1 0 111 0 0 0

lw 0 1 1 010 0 1 1

sw X 0 1 010 1 0 X

beq X 0 0 110 0 0 X



Computer Architecture

Why not single cycle?

• The longest possible datapath is the clock cycle time. 

What does it mean? 

32



Why not single cycle?

33

one clock cycle: 8ns 
Processor frequency: 125MHz
Cycle per Instruction (CPI): 1

An add instruction: 
no need of 8ns



Computer Architecture

Why not single cycle?

• The longest possible datapath is the clock cycle time. 

Violating common case fast — Basic principle of computer architecture.

34



Now what should we do??



A, B, C, D wants 
to wash 
cloths 

washer 
30 mins

dryer 
40 mins

folder 
20 mins

Task O
rder

A

B

C

D

Time
30       40       20 

6 Hours

30       40       20 30       40       20 30       40       20 

Why not single cycle?



Single Vs. Multi-cycle: Where is the Gain?

Single cycle (Worst case)  

Everyone takes 90 mins     Full package = 90 minutes 

Multi cycle (average case kinda)  

One person: 20 to 90 mins       avg = 53.33 minutes



• Measuring Performance: 

Speedup =
Execution Timeold

Execution Timenew

Execution Time = #Instructios × Cycles Per Instruction × Clock Cycle Time

• Cycles Per Instruction (CPI) = 1 for single cycle processor  
• Very good, can’t be better in simple scenarios 
• But still it’s problematic — Why?  

• The clock cycle time is bounded by the length of the critical path of the datapath — here it is the load 
instruction 

• In simple words, the overall computation time will be poor!!!  

• How can we improve? 
• Multi-cycle datapath: Improve clock frequency — but poor CPI — not a great option

Single to Multi Cycle



Single to Multi Cycle



Can We Have Both?

Faster clock rate and also CPI=1? 



A, B, C, D wants 
to wash 
cloths 

washer 
30 mins

dryer 
40 mins

folder 
20 mins

Task O
rder

A

B

C

D

Time
30       40       40 40        40      20 

3.5 Hours Main Observations 
• Different computation stages which can 

have overlapped tasks 
• This is the point of speedup!!! 

• The timing of each computation stage 
is determined by the most time 
consuming task 

• This is called pipelining  

• Tricky:  
• Each person still needs 90 mins. 
• But considering all A, B, C, D, the 

average execution time improves a 
lot.   

Basic Intuition



Latency and Bandwidth (throughput)
• Latency 
• time it takes to complete one instance 

• Throughput 
• number of computations done per unit time 

 



Following slides are adapted (with modifications) from Biswa’s slides



Let’s Summarize

Single cycle:  CPI: 1 , Cycle time: long  

Multi cycle: CPI: >1, Cycle time: short  

Pipelined: CPI: 1, Cycle time: short  (improves throughput 
but not latency) 



Computer Architecture

Pipelining and Richard Feynman

https://www.youtube.com/watch?v=9miKIWIYi4w 

Jump to 1:25 

45

https://www.youtube.com/watch?v=9miKIWIYi4w


Vanilla 5-stage pipeline
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The right place to put the MUX that selects PC+4 and the target is the fetch stage.  
The slide shows a vanilla 5-stage pipeline if we just take a single cycle datapath and divide it into five stages. 



Resource Utilization
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Visualizing Pipeline



first instruction: K cycles

Next N-1 instructions: N-1 cycles, total = K + (N-1) cycles 

For a k-stage pipeline executing N instructions

Visualizing Pipeline: Execution Time



Pipelined versus Single cycle CPU design 

50

Total latency in single cycle CPU: 3200 ns 

Total latency in pipelined CPU (200ns clock cycle):  
1000ns (1st instruction) + 3 X 200 ns (for next three) = 1600 ns  



What’s the big deal

Speedup = 3200ns/1600ns = 2X  

What if we have a billion instructions?  
Single cycle = 1 billion * 800ns = 800 seconds  
Pipelined = 1000ns + (1 billion -1) * 200ns ~ 200 seconds  

Speedup = 4X ☺  



Let’s include latch latency too 

Inter-stage latch = 10ns  

New clock cycle time in the pipelined design = 210ns 

First instruction will get completed by 1040ns (five stages X 
200 ns + four inter-stage latches * 10ns) 

New Speedup = 800s/210s ~ 3.8X 



How to Divide the Datapath?
Suppose memory is significantly slower than other stages. For 
example, suppose

t
t
t
t
t

IM
DM

ALU
RF
RW

= 10 units
= 10 units
= 5 units
= 1 unit
= 1 unit

Since the slowest stage determines the clock, it may be possible to 
combine some stages without any loss of performance
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The right place to put the MUX that selects PC+4 and the target is the fetch stage.  
The slide shows a vanilla 5-stage pipeline if we just take a single cycle datapath and divide it into five stages. 



#Stages and Speedup

IM DM1. t = t = 10,
tALU = 5,
tRF = tRW= 1
4-stage pipeline

Assumptions Unpipelined 
tC

Pipelined Speedup 
tC

27 10 2.7

25 10 2.5

25 5 5.0

2. tIM =tDM = tALU = tRF = tRW = 5
4-stage pipeline

3. tIM =tDM = tALU = tRF = tRW = 5  
       5-stage pipeline



Stage-1: Fetch
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Stage 2: Decode 
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Stage 3: Execute 
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Stage 4: Memory Stage
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Stage 5: Write-back
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The Complete Picture
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