
Digital Logic
Design + Computer
Architecture
Sayandeep Saha

Assistant Professor
Department of Computer
Science and Engineering
Indian Institute of Technology
Bombay

CPU Datapath

What is “Datapath” for a Processor?
• Same as the datapath control split we studied for GCD

processor.

• Datapath processes the data

• Controller tells how to process the data

• But here it’s for processing the instructions in an ISA

• A datapath that can process all the instructions in an

ISA

Image generated by ChatGPT

Datapath Elements
• We shall begin with the simplest case

• Every instruction finishes in one clock cycle

• The clock frequency is determined by the instruction

finishes last

• Remember, again how we constructed the GCD datapath

• Let’s first identity what are the components needed

Image generated by ChatGPT

Datapath Elements
• Remember, again how we constructed the GCD

datapath

• Let’s first identity what are the components needed

Image generated by ChatGPT

6

32
rd1

RegFile

32rd2

Write Enable (a.k.a. register write)
32

wd

5 rs1
5 rs2
5 ws

rs1 and rs2: Read register 1 and 2

ws: Write register
wd: Write data

Datapath Elements: Register File

7

Datapath Elements: The ALU

32

ALU

32

32

op • All arithmetic and logical operation happens here

• Operation selection

• E.g.,

• Op = 0: Y = A+B

• OP = 1: Y = A- B

• OP = 2; Y = A*B

8

Datapath Elements: Program Counter

• Remember PC register??

• It always points to the next instruction to be executed…

• But where is the next instruction???
3232

PC

9

Datapath Elements: Instruction Memory

32

Addr.

Instruction

32

Instr.
Mem

Remember: No writes to
instruction memory

Not concerned about how
programs are loaded into this
memory.

10

Datapath Elements: Data Memory

32

Addr.

data

32

Data
Mem

data

32

Memory Read/Write Why data and instruction memory and not one memory?
• Recall Harvard vs. Von Neuman
• Not so simple matter, will discuss later.

11

Datapath Elements: Data Memory

32

Addr.

data

32

Data
Mem

data

32

Memory Read/Write Why data and instruction memory and not one memory?
• Recall Harvard vs. Von Neuman
• Not so simple matter, will discuss later.

12

Datapath Elements: Buses

• Same as your public transport

• Transfer data and instructions

• Separate buses for address and data

13

Datapath Elements: Buses

• Same as your public transport

• Transfer data and instructions

• Separate buses for address and data

• Why???

14

Datapath Elements: Timing Diagram

• Every clock cycle we process one

instruction (super simple)

• Sending the PC and getting the instruction

from memory is called Instruction Fetch

32

Addr

Inst.

32

Instr
Mem

Fetching straight-line MIPS instructions requires a
machine that generates this timing diagram:

CLK

Addr

Data IMem[PC + 8]IMem[PC + 4]IMem[PC]

PC + 8PC + 4PC

PC == Program Counter, points to next instruction.

15

Datapath Elements: Decoding Instructions

32
rd1

RegFile

32
rd2

WE32
wd

5
rs1

5
rs2

5
ws

opcode rs rt rd functshamt

Decode fields to get : ADD $8 $9 $10

16

Datapath Elements: Decoding Instructions

32
rd1

RegFile

32
rd2

WE32
wd

5
rs1

5
rs2

5
ws

opcode rs rt rd functshamt

Decode fields to get : ADD $8 $9 $10
Logic

17

Datapath Elements: Executing Instructions

32
rd1

RegFile

32
rd2

WE32
wd

5
rs1

5
rs2

5
ws

32AL
U

32

32

op

opcode rs rt rd functshamt

Decode fields to get : ADD $8 $9 $10
Logic

Remember the opcode field
is the input to the control unit

18

Datapath Elements: Executing Instructions

32
rd1

RegFile

32
rd2

WE32
wd

5
rs1

5
rs2

5
ws

32AL
U

32

32

op

opcode rs rt rd functshamt

Decode fields to get : ADD $8 $9 $10
Logic

Remember the opcode field
is the input to the control unit

19

Datapath For Instruction Fetch

32
Addr Data

Instr
Mem

32
D

PC

Q

To rs1,
rs2, op
decode

logic ...

20

Datapath For Instruction Fetch

32
Addr Data

Instr
Mem

32
D

PC

Q
32

32

+

32

32
0x4

To rs1,
rs2, op
decode

logic ...

Computer Architecture

What about I format?

21

Sign Extension

Computer Architecture

Loads from Memory

22

32
rd1

RegFile

32
rd2

WE32
wd

5
rs1

5
rs2

5
ws

Syntax: LW $1, 32($2) Action: $1 = M[$2 + 32]

Computer Architecture

Loads from Memory

23

32
rd1

RegFile

32
rd2

WE32
wd

5
rs1

5
rs2

5
ws

Ext

ALUsrcExtOp

ALUctr

Syntax: LW $1, 32($2) Action: $1 = M[$2 + 32]

Computer Architecture

Loads from Memory

24

32
rd1

RegFile

32
rd2

WE32
wd

5
rs1

5
rs2

5
ws

ExtRegDest

ALUsrcExtOp

ALUctr

MemToReg
MemWr

Syntax: LW $1, 32($2) Action: $1 = M[$2 + 32]

RegWr

Computer Architecture

Stores to Memory (with Load Datapath)

25

32
rd1

RegFile

32
rd2

WE32
wd

5
rs1

5
rs2

5
ws

ExtRegDest

ALUsrcExtOp

ALUctr

MemToReg
MemWr

Syntax: SW $1, 32($2) Action: M[$2 + 32] = $1

RegWr

MemRd

Computer Architecture

Branch Instructions

26

Syntax: BEQ $1, $2, 12
Action: If ($1 != $2), PC = PC + 4
Action: If ($1 == $2), PC = PC + 4 + 48

Clk

32

Instr
Mem

Addr	 Data
32

D

PC

Q

32
32

+

32

32

0x4

PCSrc

32

+
32

Ex
te
nd

Branch Instructions

27

Syntax: BEQ $1, $2, 12
Action: If ($1 != $2), PC = PC + 4
Action: If ($1 == $2), PC = PC + 4 + 48

I
n

The Complete Picture

I[31-26]: Control unit

Computer Architecture

Control Signals So far

• MemRead
• MemWrite
• RegWrite
• MemtoReg
• RegDst
• ALUop, ALUSrc
• PCSrc

29

Read
address

Instruction
memory

Instruction
[31-0]

 Control

I [31 - 26]

I [5 - 0]

RegWrite

ALUSrc

ALUOp

MemWrite

MemRead

MemToReg

RegDst

PCSrc

Zero

Computer Architecture

In Detail

• MemRead: Read from memory when assert
• MemWrite: Write into the memory when assert
• RegWrite: Reg. on Write register updated with the input, on assert
• MemtoReg: On assert, memory to register, on deassert, ALU to register
• RegDst: On assert, use rd field, on deassert use rt field
• ALUSrc: On assert, lower 16 bits of an inst., on deassert from the

second register
• PCSrc: On assert, branch target, deassert, PC+4

30

Computer Architecture

Control Signal Table

31

Operation RegDst RegWrite ALUSrc ALUOp MemWrite MemRead MemToReg

add 1 1 0 010 0 0 0

sub 1 1 0 110 0 0 0

and 1 1 0 000 0 0 0

or 1 1 0 001 0 0 0

slt 1 1 0 111 0 0 0

lw 0 1 1 010 0 1 1

sw X 0 1 010 1 0 X

beq X 0 0 110 0 0 X

Computer Architecture

Why not single cycle?

• The longest possible datapath is the clock cycle time.

What does it mean?

32

Why not single cycle?

33

one clock cycle: 8ns
Processor frequency: 125MHz
Cycle per Instruction (CPI): 1

An add instruction:
no need of 8ns

Computer Architecture

Why not single cycle?

• The longest possible datapath is the clock cycle time.

Violating common case fast — Basic principle of computer architecture.

34

Now what should we do??

A, B, C, D wants
to wash
cloths

washer
30 mins

dryer
40 mins

folder
20 mins

Task O
rder

A

B

C

D

Time
30 40 20

6 Hours

30 40 20 30 40 20 30 40 20

Why not single cycle?

Single Vs. Multi-cycle: Where is the Gain?

Single cycle (Worst case)

Everyone takes 90 mins Full package = 90 minutes

Multi cycle (average case kinda)

One person: 20 to 90 mins avg = 53.33 minutes

• Measuring Performance:

Speedup =
Execution Timeold

Execution Timenew

Execution Time = #Instructios × Cycles Per Instruction × Clock Cycle Time

• Cycles Per Instruction (CPI) = 1 for single cycle processor
• Very good, can’t be better in simple scenarios
• But still it’s problematic — Why?

• The clock cycle time is bounded by the length of the critical path of the datapath — here it is the load
instruction

• In simple words, the overall computation time will be poor!!!

• How can we improve?
• Multi-cycle datapath: Improve clock frequency — but poor CPI — not a great option

Single to Multi Cycle

Single to Multi Cycle

Can We Have Both?

Faster clock rate and also CPI=1?

A, B, C, D wants
to wash
cloths

washer
30 mins

dryer
40 mins

folder
20 mins

Task O
rder

A

B

C

D

Time
30 40 40 40 40 20

3.5 Hours Main Observations
• Different computation stages which can

have overlapped tasks
• This is the point of speedup!!!

• The timing of each computation stage
is determined by the most time
consuming task

• This is called pipelining

• Tricky:
• Each person still needs 90 mins.
• But considering all A, B, C, D, the

average execution time improves a
lot.

Basic Intuition

Latency and Bandwidth (throughput)
• Latency
• time it takes to complete one instance

• Throughput
• number of computations done per unit time

Following slides are adapted (with modifications) from Biswa’s slides

Let’s Summarize

Single cycle: CPI: 1 , Cycle time: long

Multi cycle: CPI: >1, Cycle time: short

Pipelined: CPI: 1, Cycle time: short (improves throughput
but not latency)

Computer Architecture

Pipelining and Richard Feynman

https://www.youtube.com/watch?v=9miKIWIYi4w

Jump to 1:25

45

https://www.youtube.com/watch?v=9miKIWIYi4w

Vanilla 5-stage pipeline
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg File

M
U

XM
U

X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/EX

M
EM

/W
B

EX
/M

EM

4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD W
B

D
at

a

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

The right place to put the MUX that selects PC+4 and the target is the fetch stage.
The slide shows a vanilla 5-stage pipeline if we just take a single cycle datapath and divide it into five stages.

Resource Utilization

R
es

ou
rc

es

t4
I5

I4

I3

I2

I1

we
addr

rdata
Data

wdataImm
Ext

addr
rdata

Inst.

IR

0x4
Add

we

PC

rs1
rs2

rd1
ws
wd rd2
GPRs

ALU

Memory Memory

Write
I-Fetch Decode, Reg. Fetch Execute Memory -

(IF) (ID)

time t0 t1 t2 t3

(EX) (MA)
t5 t6 t7

Back
(WB)

IF I1 I2 I3 I4
ID I1 I2 I3 I5
EX I1 I2 I4 I5
MA I1 I3 I4 I5
WB I2 I3 I4 I5

Visualizing Pipeline

first instruction: K cycles

Next N-1 instructions: N-1 cycles, total = K + (N-1) cycles

For a k-stage pipeline executing N instructions

Visualizing Pipeline: Execution Time

Pipelined versus Single cycle CPU design

50

Total latency in single cycle CPU: 3200 ns

Total latency in pipelined CPU (200ns clock cycle):
1000ns (1st instruction) + 3 X 200 ns (for next three) = 1600 ns

What’s the big deal

Speedup = 3200ns/1600ns = 2X

What if we have a billion instructions?
Single cycle = 1 billion * 800ns = 800 seconds
Pipelined = 1000ns + (1 billion -1) * 200ns ~ 200 seconds

Speedup = 4X ☺

Let’s include latch latency too

Inter-stage latch = 10ns

New clock cycle time in the pipelined design = 210ns

First instruction will get completed by 1040ns (five stages X
200 ns + four inter-stage latches * 10ns)

New Speedup = 800s/210s ~ 3.8X

How to Divide the Datapath?
Suppose memory is significantly slower than other stages. For
example, suppose

t
t
t
t
t

IM
DM

ALU
RF
RW

= 10 units
= 10 units
= 5 units
= 1 unit
= 1 unit

Since the slowest stage determines the clock, it may be possible to
combine some stages without any loss of performance

Vanilla 5-stage pipeline
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg File

M
U

XM
U

X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/EX

M
EM

/W
B

EX
/M

EM

4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD W
B

D
at

a

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

The right place to put the MUX that selects PC+4 and the target is the fetch stage.
The slide shows a vanilla 5-stage pipeline if we just take a single cycle datapath and divide it into five stages.

#Stages and Speedup

IM DM1. t = t = 10,
tALU = 5,
tRF = tRW= 1
4-stage pipeline

Assumptions Unpipelined
tC

Pipelined Speedup
tC

27 10 2.7

25 10 2.5

25 5 5.0

2. tIM =tDM = tALU = tRF = tRW = 5
4-stage pipeline

3. tIM =tDM = tALU = tRF = tRW = 5
 5-stage pipeline

Stage-1: Fetch

In
st

ru
ct

io
n

bi

ts

IF / ID
Pipeline register

Instruction
Memory

PC
en

en

4

+

M
U
X

PC
 +

 4

D
ec

od
e

target

Stage 2: Decode

ID / EX
Pipeline register

re
gA

co

nt
en

t
s

re
gB

Register File

regA
regB

en

In
st

ru
ct

io
n

bi

ts

IF / ID
Pipeline register

PC
 +

 4

PC
 +

 4
Co

nt
ro

l
Si

gn
al

s

 c

on
te

nt
sFe
tc

h

Ex
ec

ut
e

destReg

data

target

Stage 3: Execute

ID / EX
Pipeline register

re
gA

co

nt
en

ts
re

gB

co
nt

en
ts

A
LU

re

su
lt

EX/Mem
Pipeline register

PC
 +

 4
Co

nt
ro

l
Si

gn
al

s

Co
nt

ro
l

Si
gn

al
s

PC
+4

+o

ff
se

t

+

re
gB

co

nt
en

ts

A
L
UM

U
X

D
ec

od
e

M
em

or
y

destReg
data

Stage 4: Memory Stage

A
LU

re

su
lt

A
LU

re

su
lt

Co
nt

ro
l

sig
na

ls
PC

+4

+o
ff

se
t

re
gB

co

nt
en

ts

Lo
ad

ed

da
ta

Co
nt

ro
l

sig
na

ls

Ex
ec

ut
e

W
ri

te
-b

ac
k

in_addr

in_data

Data Memory

en	 R/W

destReg
data

target

EX/Mem
Pipeline register

Mem/WB
Pipeline register

Stage 5: Write-back

A
LU

re

su
lt

Mem/WB
Pipeline register

Co
nt

ro
l

sig
na

ls
Lo

ad
ed

da

ta

M
U
X

data

destReg
M
U
X

M
em

or
y

The Complete Picture

PC Inst
Mem

Register
File	 	 X

A 	 	
L
U

4

Data
Memory

+

M
U
X

IF/ID EX/Mem Mem/WB

M
U
X

dest

op

ID/EX

offset

valB

valA

PC+4PC+4
+	 target	

ALU
result

dest

op

valB

dest

op

 	 ALU 	
M 	 result 	 U

mdata

eq?instruction

 regA
 regB

data
dest

M
U
X

data
dest

