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Pipeline Hazards
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first instruction: k cycles
Next N-1 instructions: N-1 cycles, total = K + (N-1) cycles 

For a k-stage pipeline executing N instructions



Pipeline In Real World

Inter-instruction depenceny

Branches

Stages does not take uniform time

Limited resources

Limited resources



Pipeline Hazards
• Hazards are events in which prevents an instruction going 

down the pipeline. The pipeline is stalled 

• Structural hazards 

• Data hazards 

• Control hazards



Structural Hazards
• When two instructions wants to access the same resource 

at the same clock cycle.

conflict

• Issue: two instruction wants to access the 
memory simultaneously 
• One reading data 
• Other reading instruction. 

• Solution: Separate instruction and data 
memory



Structural Hazards
• Can also happen for register files. • Issue: conflict in ID and WB stage 

• Insufficient number of read/write ports 
• Read write in the same cycle, but no 

“write before read” convention. 
• Solution:  

• Separate and multiple read write ports 
• Write in the first half of the clock cycle 

and read in the second half.

• Structural hazards are relatively rare in modern processors — compilers are smart. 
• Only happens for less frequently used functional units



Data Hazards
• Hazards arising due to data dependency

•The first DADD writes R1 at WB stage. 

•All succeeding instructions reads the R1 result 

•So, all instruction except the last OR and XOR has to 

wait for the WB of the first instruction. 

•So we need two stall cycles or something else!!



Data dependences

add	 R1, R2, R3 

sub	 R2, R4, R1 

or	 R1, R6, R3

add	 R1, R2, R3 

sub	 R2, R4, R1 

or	 R1, R6, R3

add	 R1, R2, R3 

sub	 R2, R4, R1 

or	 R1, R6, R3

read-after-write 
(RAW)

write-after-read 
(WAR)

write-after-write 
(WAW)

True dependence Anti dependence Output dependence



Data Hazards

Read-After-Write (RAW)  
•Read must wait until earlier write finishes 

Anti-Dependence (WAR) 
•Write must wait until earlier read finishes. Not possible with vanilla 5-stage 
pipeline 

•Output Dependence (WAW) 
•Earlier write can’t overwrite later write  
 Not possible with vanilla 5-stage pipeline)



Control Hazards
• Hazards arising due to branching…

• Remember!!! Branch target is not known during fetch. 

• if a branch changes the PC to its target address, it is a taken 
branch. 

• Else it is untaken. 



Control Hazards
• Hazards arising due to branching… 

• What happens to the instructions at 14, 18, 22?



What is a Stall
• Putting bubbles in pipeline.  

• Actually wasting clock cycles — in a stall cycle no instruction can enter the pipeline 

• De-assart all control signals 

• Compiler way — put a nop instruction. — eg,  sll $0 $0 (in MIPS)



Control Hazard and Stalls

● The earliest we can get to know the branch outcome is at the end of ID stage (needs some simple 
hardware modification)

This IF has to be undone — results in a stall cycle



How Stall is implemented in Pipelines
• Can be detected from the content of the pipeline registers. 

• Upon detecting stall, just do not update the PC and dessert all control signals

PC: Biswa



Data Hazard Detector and stalls

EX to DEC:  
EX/MEM.RegisterRd = ID/EX.RegisterRs       
EX/MEM.RegisterRd = ID/EX.RegisterRt 

MEM to DEC: 
MEM/WB.RegisterRd = ID/EX.RegisterRs 
MEM/WB.RegisterRd = ID/EX.RegisterRt            



Data Hazards
• Hazards arising due to data dependency

•The first DADD writes R1 at WB stage. 

•All succeeding instructions reads the R1 result 

•So, all instruction except the last OR and XOR has to 

wait for the WB of the first instruction. 

•So we need two stall cycles or something else!!



Handling Data Hazards: Forwarding

•No stalls!! 
•Can be generalised — any functional unit 
generating data can forward to any other 
input whenever needed.



Handling Data Hazards: Forwarding
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Can Forwarding Solve All the Problems?
•No problems for the AND and OR — 
forwarding works fine 

•But we cannot forward for the DSUB as it is 
backward in time. 

•So one cycle stall is needed. 



What Happens to Speedup with Stalls

Speedup =
CPI Unpipelined

CPI Ideal + stall cycles

• CPI Ideal = 1 
• Also assume stages are perfectly balanced so that if the unpipelined 
cycle time is T, the pipelined cycle time becomes T/k for a k stage 
pipeline. — so easy to cancel out T



The Complete Picture
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• For Jumps 
• Opcode, offset, and PC 

• For Jump Register 
• Opcode and register value 

• For Conditional Branches 
• Opcode, offset, PC, and register (for condition) 

• For all others 

What do we need to calculate—next PC?

Control Hazards



• For Jumps 
• Opcode, offset, and PC 

• For Jump Register 
• Opcode and register value 

• For Conditional Branches 
• Opcode, offset, PC, and register (for condition) 

What do we need to calculate next PC?

• PC - Fetch 
• Opcode, offset - Decode (or Fetch?) 
• Register value - Decode 
• Branch condition ((rs)==0) - Execute (or Decode?)

In what stage do we know these?

Control Hazards



Speculate, PC=PC+4

I2

I1

104

PC addr 
inst 

Inst 
Memory

kill

PCSrc (pc+4 / target) stall

Add
E M

0x4
Add

nop
IR IR

Jump?

IR

I1

I2

I3

I4

096 ADD
100 J 304
104 ADD
304 ADD

What happens on mis-speculation, i.e., when next instruction is not PC+4?

How? Insert NOPs



Conditional branches

I1

I2

I3

I4

096 ADD
100 BEQZ r1 200
104 ADD
304 ADD

Branch condition is not known 
until the execute stage

Instructions between a branch instruction and the target are 
in the wrong-path if the branch is not taken  



Again (stalls/NOPs)
time
t0 t1 t2 t3 t4 t5 t6 t7 . . . .

(I1) 096: ADD IF1 ID1 EX1 MA1 WB1

(I2) 100: BEQZ 200 IF2 ID2 EX2 MA2 WB2

(I3) 104: ADD IF3 ID3 nop nop nop
(I4) 108: IF4 nop nop nop nop
(I5) 304: ADD IF5 ID5 EX5 MA5 WB5

time
t0 t1 t2 t3 t4 t5 t6 t7 . . . .

Resource
Usage

IF I1 I2 

ID I1
EX
MA
WB

I3

I2

I1

I4

I3

I2

I1

I5

nop I5

nop nop I5

I2 nop nop I5

I1 I2 nop nop I5



What else can be done? Compiler?
Delayed branch: Define branch to take place AFTER a 
following instruction (used to be in early RISC processors)

  branch instruction 
sequential successor1 
sequential successor2

........ 
sequential successorn 

branch target if taken

Branch delay of length n



Computer Architecture

Scheduling Branch Delay Slots

29
A is the best choice, fills delay slot & reduces instruction count (IC)

add	 $1,$2,$3  
if $2=0 then

delay slot

A. From before branch

becomes

if $2=0 then

add	 $1,$2,$3



Computer Architecture

Scheduling Branch Delay Slots

30
A is the best choice, fills delay slot & reduces instruction count (IC)

add	 $1,$2,$3  
if $2=0 then

delay slot

A. From before branch	 B. From branch target

add	 $1,$2,$3  
if $1=0 then
delay slot

sub $4,$5,$6

becomes becomes

if $2=0 then

add	 $1,$2,$3
add	 $1,$2,$3  
if $1=0 then
sub $4,$5,$6



Scheduling Branch Delay Slots

A is the best choice 
Do not put a branch in the delay slot :P 

add	 $1,$2,$3  
if $2=0 then

delay slot

A. From before branch	 B. From branch target

add	 $1,$2,$3  
if $1=0 then
delay slot

C. From fall through 

add	 $1,$2,$3  
if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes

if $2=0 then

add	 $1,$2,$3
add	 $1,$2,$3  
if $1=0 then
sub $4,$5,$6

becomes 
add	 $1,$2,$3  
if $1=0 then

sub $4,$5,$6



New Pipeline Speedup 

Pipeline Speedup =   Pipeline Depth  
                            ---------------------------------------------------- 
                               1+pipeline stalls because of branches 

Pipeline stalls (branches) = Branch frequency X penalty



Branch instructions

I1:
I2:
I3:
I4:
I5:

t1 t2 t3 t4 t5 t6 t7 t8Time:
Inst

I6:

IF (Fetch) ID (Decode) EX (ALU) MEM WB

IF ID
IF

EX
ID
IF

MEM WB
EX stage computes 
if branch is taken

If branch is taken, these 
instructions MUST NOT complete!

I-Mem



Branch Predictors

I1:
I2:
I3:
I4:
I5:

t1 t2 t3 t4 t5 t6 t7 t8Time:
Inst

I6:

IF (Fetch) ID (Decode) EX (ALU) MEM WB

IF ID
IF

EX
ID
IF

MEM WB
EX stage computes 
if branch is taken

If branch is taken, these 
instructions MUST NOT complete!

I-Mem

A control 
instr?

Taken 
or Not 
Taken?

If taken, 
where to? 
What PC?

Branch 
Predictor

Predictions
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Branch Predictors

•Predict whether the next PC is a branch PC in the fetch stage 

•  But: 

• If it is branch, will it be taken? 

•What is the target address? 

•Not known at fetch…..



Branch Predictor: A bit deeper

Three tasks 

1. Is the PC a branch/jump? YES/NO  
2. If Yes, can we predict the direction? Taken or not-taken 
3. If taken, can we predict the target address? 



Program  
Counter

Address of the  
current branch

Branch Predictor: A bit deeper



Direction predictor

Program  
Counter

PC + 4

taken?

Next Fetch 
Address

Address of the  
current branch

Branch Predictor: A bit deeper



target address

Direction predictor

Repository of Target Addresses (BTB: Branch Target Buffer)

Program  
Counter

PC + 4

taken?

Next Fetch 
Address

hit?

Address of the  
current branch

Branch Predictor: A bit deeper



Static (compiler) Direction Prediction

Always not-taken: Simple to implement: no need for BTB,  
no direction prediction 
Low accuracy: ~30-40% 

Always taken: No direction prediction, we need BTB though 
Better accuracy: ~60-70%  
Backward branches (i.e., loop branches) are usually taken 



Dynamic Predictors

Microarchitectural way of predicting it.  

Simple one: Last time predictor 



Last-time predictor

predict
taken

predict
not

taken

actually 
taken

actually 
not taken



Last-time predictor

predict 
taken

predict 
not 

taken

actually 
not taken

actually 
taken

actually 
taken

actually 
not taken



Implementation 

K bits of branch  
instruction address

Index



Implementation 

K bits of branch  
instruction address

Index

Branch history 
table of 2K entries, 
1 bit per entry



Implementation 

K bits of branch  
instruction address

Index

Branch history 
table of 2K entries, 
1 bit per entry

Use this entry to  
predict this branch: 

0: predict not taken 
1: predict taken



Performance of Last-time predictor
TTTTTTTTTTNNNNNNNNNN - 90% accuracy 
Always mispredicts the last iteration and the first iteration of a 
loop branch 
Accuracy for a loop with N iterations = (N-2)/N 
+ Loop branches for loops with large number of iterations 
-- Loop branches for loops will small number of iterations 
	  
TNTNTNTNTNTNTNTNTNTN —   0% accuracy 



20% of all instructions are branches, 85% accuracy 

	

Last-time predictor CPI =  

[ 1 + (0.20*0.15) * 2 ]  =  

1.06 (minimum two stalls to resolve a branch) 

Performance: Calculating the CPI
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Types of Branches

 Conditional Unconditional 
Direct if - then- else 

for loops 
(bez, bnez, etc) 

procedure calls (jal) 
goto (j) 

Indirect  return (jr) 
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Why do we need branch prediction?
● Allows useful work to be completed while waiting 

for a branch to resolve.

● Processors with deep pipelines 
– Intel Core 2 Duo: 14 stages 
– AMD Athlon 64: 12 stages 
– Intel Pentium 4: 31 stages 

● Many cycles before branch is resolved 
– Wasting time if wait… 
– Would be good if can do some useful work…



Branch Prediction
• Key Idea: Predict branch outcome heuristically.  

• 	 If successful, then we’ve gained a performance 

improvement.  

• Otherwise, discard instructions that have been executed 

speculatively. 

• Program execution state is still correct, all we’ve done is “waste” 

a little power. 



Branch Prediction Strategies
● Static: 

– Decided before runtime 
– Examples: 

● Always-Not Taken 
● Always-Taken 
● Backwards Taken, Forward Not Taken (BTFNT) 

• Dynamic (aka profile-driven prediction): 
– Prediction decisions may change during the execution 

of the program



What happens when a branch is 
mispredicted?

● On a mispredict: 
– No speculative state may commit 

● Squash instructions in the pipeline 
● Cannot allow stores to registers for instructions which 

would not get to commit 
– Need to handle exceptions appropriately



Direction Based Prediction

• Pro: Simple to implement 

• But, branch behaviour is often variable 
(dynamic) and depends on how the program is 
behaving recently.  

• Can’t capture such behaviour at compile time 
with simple direction based prediction! 

• Need history (aka profile)-based 
prediction.
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Direction-Based Branch Prediction
● Which things exactly to predict? 

– Direction:  
● Taken / Not Taken 
● Can only be Direction  

– Target Address 
● PC+offset (Taken)/ PC+4 (Not Taken)  
● How implemented? 

–Using Branch Target Address Cache (BTAC) or 
Branch Target Buffer (BTB)



target address

Direction predictor

Repository of Target Addresses (BTB: Branch Target Buffer)

Program  
Counter

PC + 4

taken?

Next Fetch 
Address

hit?

Address of the  
current branch

Branch Predictor: A bit deeper
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Example: Branch Penalty Calculation

● Assume  a MIPS pipeline using predict 
taken: 
– 16% of all instructions are branches: 

● 4% unconditional branches:  3 cycle penalty 
● 12% conditional:   

– 50% taken: 3 cycle penalty 
– 50% not taken: 0 cycle penalty
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Solution
● For a sequence of N instructions: 

– 3 * 0.04 * N delays due to unconditional branches 
– 0.5 * 3 * 0.12 * N delays due to conditional taken 

● Overall CPI= 
– 1.3*N  
– (or 1.3 cycles/instruction)  
– 30% Performance Hit!!! 



History-based Branch Prediction
● An important example is State-based 

branch prediction: 
● Consists of 2 parts: 

– “Predictor” to guess where/if instruction 
will branch (and to where) 

– “Recovery Mechanism”:  A way to fix  
mistakes



History-based Branch Prediction  
● One bit predictor: 

– Use the  outcome from the last time the branch 
instruction was executed. 

● Problem: 
– Even if branch is almost always taken, we will be 

wrong at least twice 
– if branch alternates between taken, not taken 

● We get 0% accuracy



Example
● Let initial value = T 
● Suppose actual outcome of branches             

		 	 	 	 	 	 	 	   NT, NT,NT,T,T,T 
– Predictions are:  T, NT,NT,NT,T,T 

● 2 wrong (in red), 4 correct = 66% accuracy 
● 2-bit predictors can do better 
● In general, can have k-bit predictors.



1-bit Predictor: Exercise
● Program assumptions: 

– 23% loads and in ½ of cases, next 
instruction uses load value 

– 13% stores 
– 19% conditional branches 
– 2% unconditional branches 
– 43% other
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Exercise                               
● Machine Assumptions: 

– 5 stage pipe 
● Penalty of 1 cycle on use of load value 
immediately after a load. 

● Jumps are resolved in ID stage and incur a 1 
cycle branch penalty. 

● 75% branch prediction accuracy and 1 cycle 
delay (penalty) on misprediction.
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Solution 
                  ● CPI penalty calculation: 

– Loads: 
● 50% of the 23% of loads have 1 cycle penalty:  0.5*.23=0.115 

– Jumps: 
● All  2% of jumps have 1 cycle penalty:  0.02*1 = 0.02 

– Conditional Branches: 
● 25% of the 19% are mispredicted, have a 1 cycle penalty:  

0.25*0.19*1 = 0.0475 
● Total Penalty:  0.115 + 0.02 + 0.0475 = 0.1825 
● Average CPI:  1 + 0.1825 = 1.1825
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2-bit branch prediction
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● Approach: Prediction is changed only if mispredicted 
twice 

● Adds hysteresis to decision making process 
Red: stop, not taken 
Green: go, taken

2-Bit Branch Prediction

T

T

NT

Predict Taken

Predict Not  
Taken

Predict Taken

Predict Not  
Taken

11 10

01 00
T

NT

T

NT

NT
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AKA Saturation Counter Predictor
● Observation: branches highly bimodal 
● n-bit saturation counter 

– Hysteresis 
– n-bit entries in branch prediction table

00 01 10 11

Pred. TakenPred. Not-Taken
T T T

T

NNN

N

WEAK bias

Strong biase.g. 2-bit bimodal predictor



n-bit Saturating Counter
● Values: 0 ~ 2n-1 
● When the counter is greater than or equal to one-

half of its maximum value,  
– the branch is predicted as taken. Otherwise, not taken. 

● Studies have shown that the 2-bit predictors do 
almost as well
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2-bit Predictor
● What is the prediction accuracy using a 4096 entry 2-bit 

branch predictor for  a typical application? 
– 99% to 80% depending upon the application. 

● Can an n-bit (n>2) predictor do better? 
– Not really! 2-bit predictors do almost as well as any n-bit 

predictors. 
● How can then the accuracy of branch prediction be 

improved? 
– Correlating branch predictor.



Predictors in Simple Pipelines
● Initial pipelined processors, e.g. MIPS, SOLARIS, etc.: 

– Did only trivial branch predictions. 
● Possible reasons could be: 

– The penalty of mispredictions not as severe as in deeper 
pipelined processors. 

– Sophisticated branch predictors did not exist. 
● Advanced branch prediction techniques have now 

become very important: 
–  With the use of deeper pipelines. 
– Introduction of superscalar processors.
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Improving Accuracy of Branch Predictors
● It may be possible to improve the accuracy of 

branch prediction: 
– By observing the recent behavior of other branches. 

● Example:

if (a==2){ 

        b=2;} 

if(b==2}{ 

        b=0;}



The Main Idea

● Record m most recently executed branches as 
taken or not taken,  
– Use that pattern to select the proper n-bit branch 

history table (BHT).



Main Idea
● An (m,k) predictor: 

– Makes use of the outcomes observed for  the 
last m branches: 
– Uses m number of k-bit predictors. 
– Behavior of a branch can be predicted by 

choosing from 2**m branch predictors.



Local and global history
• Local Behavior 
What is the predicted direction of Branch A given the outcomes 
of previous instances of Branch A ? 

• Global Behavior 
     What is the predicted direction of Branch Z given the  
outcomes of all* previous branches A, B, …, X and Y? 
     Number of previous branches tracked limited by the history 
length



Two Level Branch Predictors 
First level: Global branch history register (N bits) 
The direction of last N branches 

Second level: Table of saturating counters for each history entry 
The direction the branch took the last time the same history was seen

1 1 ….. 1  0

GHR 
(global history register)



Two Level Branch Predictors 
First level: Global branch history register (N bits) 
The direction of last N branches 

Second level: Table of saturating counters for each history entry 
     The direction the branch took the last time the same history was seen 

1 1 ….. 1  0

GHR 
(global history register)

00 …. 00

00 …. 01

00 …. 10

11 ….  11

index

Pattern History Table (PHT) 

previous one 



Two Level Branch Predictors 
First level: Global branch history register (N bits) 
The direction of last N branches 

Second level: Table of saturating counters for each history entry 
    The direction the branch took the last time the same history was seen

1 1 ….. 1  0

GHR 
(global history register)

00 …. 00

00 …. 01

00 …. 10

11 ….  11

0 1

2 3

index

Pattern History Table (PHT) 

previous one 



GHR per branch

1 1 ….. 1  0

00 …. 00

00 …. 01

00 …. 10

11 ….  11

m bit k bit

2m 2p 

(PC >> 2) &   (2p -1) 

BHT PHT

Mostly K=2, m =12 for example
BHT: Branch history table



Set of branches: One register for correlated 
ones

1 1 ….. 1  0

m bit

2p 

(PC %   2p ) 

BHT

Can lead to positive/negative/neutral interference

00 …. 00

00 …. 01

00 …. 10

11 ….  11

k bit

2m 

PHT

B1: if (aa == 2) aa = 0;  
B2: if (bb == 2); bb=0;  
B3: if (aa != bb) { … }



Gshare is the answer

1 1 ….. 1  0

00 …. 00

00 …. 01

00 …. 10

11 ….  11

m bit
k bit

2m 

PC >>2 & 2m -1

For a given history and for a given branch (PC) counters are 
trained



Few Important Points

Branch prediction happens at the IF stage.  

We know the target outcome at the end of EX stage. 

So BHT and PHT will be updated after EX stage for the 
corresponding PC.  Any issues here?  



Issue 

I1   F   D   E 
I2        F    D   E 
I3               F   D  E 

Lets assume I1 and I3 are branch instructions. I1 will update 
BHT and PHT in E stage, and I3 will probe BHT and PHT in 
F stage. To make sure PHT is updated correctly with the 
correct BHT entry, BHT entry is communicated till the E 
stage. 



State-of-the-art



BTB (Target Address Predictor)

0b0110[...]01001000

2 state 
bits

Branch 
History Table 

(BHT)target address
Branch Target Buffer (BTB)

PC + 4 + Loop

30-bit address tag

0b0110[...]0010

Address of branch instruction

BTB is probed in 
the fetch stage 
along with the 

direction predictor.  

A hit in the BTB 
means the PC is a 

branch PC. 

Branch instruction
BNEZ R1 Loop



Branch Target Buffer

Branch Instruction 
Address

Branch Prediction 
Statistics

Branch Target 
Address

. 

. 

.

. 

. 

.

. 

. 

.

❑ For BTB to make a correct prediction, we need: 
 BTB hit: the branch instruction should be in the BTB  
 Prediction hit: the prediction should be correct 
 Target match: the target address must not be changed from the last time 

❑ Example: BTB hit ratio of 96%, 97% prediction hit, 1.2% of target change, 
The overall prediction accuracy = 0.96 * 0.97 *0.988 = 92%



Book

Textbook reading: P & H, Chapter 4


