
Digital Logic
Design + Computer
Architecture
Sayandeep Saha

Assistant Professor
Department of Computer
Science and Engineering
Indian Institute of Technology
Bombay

Pipeline Hazards

Pipeline Recap…
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg File

M
U

XM
U

X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/EX

M
EM

/W
B

EX
/M

EM

4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD W
B

D
at

a

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

first instruction: k cycles
Next N-1 instructions: N-1 cycles, total = K + (N-1) cycles

For a k-stage pipeline executing N instructions

Pipeline In Real World

Inter-instruction depenceny

Branches

Stages does not take uniform time

Limited resources

Limited resources

Pipeline Hazards
• Hazards are events in which prevents an instruction going

down the pipeline. The pipeline is stalled

• Structural hazards

• Data hazards

• Control hazards

Structural Hazards
• When two instructions wants to access the same resource

at the same clock cycle.

conflict

• Issue: two instruction wants to access the
memory simultaneously
• One reading data
• Other reading instruction.

• Solution: Separate instruction and data
memory

Structural Hazards
• Can also happen for register files. • Issue: conflict in ID and WB stage

• Insufficient number of read/write ports
• Read write in the same cycle, but no

“write before read” convention.
• Solution:

• Separate and multiple read write ports
• Write in the first half of the clock cycle

and read in the second half.

• Structural hazards are relatively rare in modern processors — compilers are smart.
• Only happens for less frequently used functional units

Data Hazards
• Hazards arising due to data dependency

•The first DADD writes R1 at WB stage.

•All succeeding instructions reads the R1 result

•So, all instruction except the last OR and XOR has to

wait for the WB of the first instruction.

•So we need two stall cycles or something else!!

Data dependences

add	 R1, R2, R3

sub	 R2, R4, R1

or	 R1, R6, R3

add	 R1, R2, R3

sub	 R2, R4, R1

or	 R1, R6, R3

add	 R1, R2, R3

sub	 R2, R4, R1

or	 R1, R6, R3

read-after-write
(RAW)

write-after-read
(WAR)

write-after-write
(WAW)

True dependence Anti dependence Output dependence

Data Hazards

Read-After-Write (RAW)
•Read must wait until earlier write finishes

Anti-Dependence (WAR)
•Write must wait until earlier read finishes. Not possible with vanilla 5-stage
pipeline

•Output Dependence (WAW)
•Earlier write can’t overwrite later write
 Not possible with vanilla 5-stage pipeline)

Control Hazards
• Hazards arising due to branching…

• Remember!!! Branch target is not known during fetch.

• if a branch changes the PC to its target address, it is a taken
branch.

• Else it is untaken.

Control Hazards
• Hazards arising due to branching…

• What happens to the instructions at 14, 18, 22?

What is a Stall
• Putting bubbles in pipeline.

• Actually wasting clock cycles — in a stall cycle no instruction can enter the pipeline

• De-assart all control signals

• Compiler way — put a nop instruction. — eg, sll $0 $0 (in MIPS)

Control Hazard and Stalls

● The earliest we can get to know the branch outcome is at the end of ID stage (needs some simple
hardware modification)

This IF has to be undone — results in a stall cycle

How Stall is implemented in Pipelines
• Can be detected from the content of the pipeline registers.

• Upon detecting stall, just do not update the PC and dessert all control signals

PC: Biswa

Data Hazard Detector and stalls

EX to DEC:
EX/MEM.RegisterRd = ID/EX.RegisterRs
EX/MEM.RegisterRd = ID/EX.RegisterRt

MEM to DEC:
MEM/WB.RegisterRd = ID/EX.RegisterRs
MEM/WB.RegisterRd = ID/EX.RegisterRt

Data Hazards
• Hazards arising due to data dependency

•The first DADD writes R1 at WB stage.

•All succeeding instructions reads the R1 result

•So, all instruction except the last OR and XOR has to

wait for the WB of the first instruction.

•So we need two stall cycles or something else!!

Handling Data Hazards: Forwarding

•No stalls!!
•Can be generalised — any functional unit
generating data can forward to any other
input whenever needed.

Handling Data Hazards: Forwarding

M
EM

/W
R

ID
/EX

EX
/M

EM
 Data

Memory

A
LU

m
ux

m
ux

Registers

NextPC

Immediate

m
ux

PC: Biswa

Can Forwarding Solve All the Problems?
•No problems for the AND and OR —
forwarding works fine

•But we cannot forward for the DSUB as it is
backward in time.

•So one cycle stall is needed.

What Happens to Speedup with Stalls

Speedup =
CPI Unpipelined

CPI Ideal + stall cycles

• CPI Ideal = 1
• Also assume stages are perfectly balanced so that if the unpipelined
cycle time is T, the pipelined cycle time becomes T/k for a k stage
pipeline. — so easy to cancel out T

The Complete Picture

PC Inst
Mem

Register
File	 	 X

A 	 	
L
U

4

Data
Memory

+

M
U
X

IF/ID EX/Mem Mem/WB

M
U
X

dest

op

ID/EX

offset

valB

valA

PC+4PC+4
+	 target	

ALU
result

dest

op

valB

dest

op

 	 ALU 	
M 	 result 	 U

mdata

eq?instruction

 regA
 regB

data
dest

M
U
X

data
dest

• For Jumps
• Opcode, offset, and PC

• For Jump Register
• Opcode and register value

• For Conditional Branches
• Opcode, offset, PC, and register (for condition)

• For all others

What do we need to calculate—next PC?

Control Hazards

• For Jumps
• Opcode, offset, and PC

• For Jump Register
• Opcode and register value

• For Conditional Branches
• Opcode, offset, PC, and register (for condition)

What do we need to calculate next PC?

• PC - Fetch
• Opcode, offset - Decode (or Fetch?)
• Register value - Decode
• Branch condition ((rs)==0) - Execute (or Decode?)

In what stage do we know these?

Control Hazards

Speculate, PC=PC+4

I2

I1

104

PC addr
inst

Inst
Memory

kill

PCSrc (pc+4 / target) stall

Add
E M

0x4
Add

nop
IR IR

Jump?

IR

I1

I2

I3

I4

096 ADD
100 J 304
104 ADD
304 ADD

What happens on mis-speculation, i.e., when next instruction is not PC+4?

How? Insert NOPs

Conditional branches

I1

I2

I3

I4

096 ADD
100 BEQZ r1 200
104 ADD
304 ADD

Branch condition is not known
until the execute stage

Instructions between a branch instruction and the target are
in the wrong-path if the branch is not taken

Again (stalls/NOPs)
time
t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1 MA1 WB1

(I2) 100: BEQZ 200 IF2 ID2 EX2 MA2 WB2

(I3) 104: ADD IF3 ID3 nop nop nop
(I4) 108: IF4 nop nop nop nop
(I5) 304: ADD IF5 ID5 EX5 MA5 WB5

time
t0 t1 t2 t3 t4 t5 t6 t7

Resource
Usage

IF I1 I2

ID I1
EX
MA
WB

I3

I2

I1

I4

I3

I2

I1

I5

nop I5

nop nop I5

I2 nop nop I5

I1 I2 nop nop I5

What else can be done? Compiler?
Delayed branch: Define branch to take place AFTER a
following instruction (used to be in early RISC processors)

 branch instruction
sequential successor1
sequential successor2

........
sequential successorn

branch target if taken

Branch delay of length n

Computer Architecture

Scheduling Branch Delay Slots

29
A is the best choice, fills delay slot & reduces instruction count (IC)

add	 $1,$2,$3
if $2=0 then

delay slot

A. From before branch

becomes

if $2=0 then

add	 $1,$2,$3

Computer Architecture

Scheduling Branch Delay Slots

30
A is the best choice, fills delay slot & reduces instruction count (IC)

add	 $1,$2,$3
if $2=0 then

delay slot

A. From before branch	 B. From branch target

add	 $1,$2,$3
if $1=0 then
delay slot

sub $4,$5,$6

becomes becomes

if $2=0 then

add	 $1,$2,$3
add	 $1,$2,$3
if $1=0 then
sub $4,$5,$6

Scheduling Branch Delay Slots

A is the best choice
Do not put a branch in the delay slot :P

add	 $1,$2,$3
if $2=0 then

delay slot

A. From before branch	 B. From branch target

add	 $1,$2,$3
if $1=0 then
delay slot

C. From fall through

add	 $1,$2,$3
if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes

if $2=0 then

add	 $1,$2,$3
add	 $1,$2,$3
if $1=0 then
sub $4,$5,$6

becomes
add	 $1,$2,$3
if $1=0 then

sub $4,$5,$6

New Pipeline Speedup

Pipeline Speedup = Pipeline Depth
 --
 1+pipeline stalls because of branches

Pipeline stalls (branches) = Branch frequency X penalty

Branch instructions

I1:
I2:
I3:
I4:
I5:

t1 t2 t3 t4 t5 t6 t7 t8Time:
Inst

I6:

IF (Fetch) ID (Decode) EX (ALU) MEM WB

IF ID
IF

EX
ID
IF

MEM WB
EX stage computes
if branch is taken

If branch is taken, these
instructions MUST NOT complete!

I-Mem

Branch Predictors

I1:
I2:
I3:
I4:
I5:

t1 t2 t3 t4 t5 t6 t7 t8Time:
Inst

I6:

IF (Fetch) ID (Decode) EX (ALU) MEM WB

IF ID
IF

EX
ID
IF

MEM WB
EX stage computes
if branch is taken

If branch is taken, these
instructions MUST NOT complete!

I-Mem

A control
instr?

Taken
or Not
Taken?

If taken,
where to?
What PC?

Branch
Predictor

Predictions

Computer Architecture 35

Branch Predictors

•Predict whether the next PC is a branch PC in the fetch stage

• But:

• If it is branch, will it be taken?

•What is the target address?

•Not known at fetch…..

Branch Predictor: A bit deeper

Three tasks

1. Is the PC a branch/jump? YES/NO
2. If Yes, can we predict the direction? Taken or not-taken
3. If taken, can we predict the target address?

Program
Counter

Address of the
current branch

Branch Predictor: A bit deeper

Direction predictor

Program
Counter

PC + 4

taken?

Next Fetch
Address

Address of the
current branch

Branch Predictor: A bit deeper

target address

Direction predictor

Repository of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + 4

taken?

Next Fetch
Address

hit?

Address of the
current branch

Branch Predictor: A bit deeper

Static (compiler) Direction Prediction

Always not-taken: Simple to implement: no need for BTB,
no direction prediction
Low accuracy: ~30-40%

Always taken: No direction prediction, we need BTB though
Better accuracy: ~60-70%
Backward branches (i.e., loop branches) are usually taken

Dynamic Predictors

Microarchitectural way of predicting it.

Simple one: Last time predictor

Last-time predictor

predict
taken

predict
not

taken

actually
taken

actually
not taken

Last-time predictor

predict
taken

predict
not

taken

actually
not taken

actually
taken

actually
taken

actually
not taken

Implementation

K bits of branch  
instruction address

Index

Implementation

K bits of branch  
instruction address

Index

Branch history 
table of 2K entries, 
1 bit per entry

Implementation

K bits of branch  
instruction address

Index

Branch history 
table of 2K entries, 
1 bit per entry

Use this entry to  
predict this branch:

0: predict not taken
1: predict taken

Performance of Last-time predictor
TTTTTTTTTTNNNNNNNNNN - 90% accuracy
Always mispredicts the last iteration and the first iteration of a
loop branch
Accuracy for a loop with N iterations = (N-2)/N
+ Loop branches for loops with large number of iterations
-- Loop branches for loops will small number of iterations
	
TNTNTNTNTNTNTNTNTNTN — 0% accuracy

20% of all instructions are branches, 85% accuracy

	

Last-time predictor CPI =

[1 + (0.20*0.15) * 2] =

1.06 (minimum two stalls to resolve a branch)

Performance: Calculating the CPI

49

Types of Branches

 Conditional Unconditional
Direct if - then- else

for loops
(bez, bnez, etc)

procedure calls (jal)
goto (j)

Indirect return (jr)

50

Why do we need branch prediction?
● Allows useful work to be completed while waiting

for a branch to resolve.

● Processors with deep pipelines
– Intel Core 2 Duo: 14 stages
– AMD Athlon 64: 12 stages
– Intel Pentium 4: 31 stages

● Many cycles before branch is resolved
– Wasting time if wait…
– Would be good if can do some useful work…

Branch Prediction
• Key Idea: Predict branch outcome heuristically.

• 	 If successful, then we’ve gained a performance

improvement.

• Otherwise, discard instructions that have been executed

speculatively.

• Program execution state is still correct, all we’ve done is “waste”

a little power.

Branch Prediction Strategies
● Static:

– Decided before runtime
– Examples:

● Always-Not Taken
● Always-Taken
● Backwards Taken, Forward Not Taken (BTFNT)

• Dynamic (aka profile-driven prediction):
– Prediction decisions may change during the execution

of the program

What happens when a branch is
mispredicted?

● On a mispredict:
– No speculative state may commit

● Squash instructions in the pipeline
● Cannot allow stores to registers for instructions which

would not get to commit
– Need to handle exceptions appropriately

Direction Based Prediction

• Pro: Simple to implement

• But, branch behaviour is often variable
(dynamic) and depends on how the program is
behaving recently.

• Can’t capture such behaviour at compile time
with simple direction based prediction!

• Need history (aka profile)-based
prediction.

55

Direction-Based Branch Prediction
● Which things exactly to predict?

– Direction:
● Taken / Not Taken
● Can only be Direction

– Target Address
● PC+offset (Taken)/ PC+4 (Not Taken)
● How implemented?

–Using Branch Target Address Cache (BTAC) or
Branch Target Buffer (BTB)

target address

Direction predictor

Repository of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + 4

taken?

Next Fetch
Address

hit?

Address of the
current branch

Branch Predictor: A bit deeper

57

Example: Branch Penalty Calculation

● Assume a MIPS pipeline using predict
taken:
– 16% of all instructions are branches:

● 4% unconditional branches: 3 cycle penalty
● 12% conditional:

– 50% taken: 3 cycle penalty
– 50% not taken: 0 cycle penalty

58

Solution
● For a sequence of N instructions:

– 3 * 0.04 * N delays due to unconditional branches
– 0.5 * 3 * 0.12 * N delays due to conditional taken

● Overall CPI=
– 1.3*N
– (or 1.3 cycles/instruction)
– 30% Performance Hit!!!

History-based Branch Prediction
● An important example is State-based

branch prediction:
● Consists of 2 parts:

– “Predictor” to guess where/if instruction
will branch (and to where)

– “Recovery Mechanism”: A way to fix
mistakes

History-based Branch Prediction
● One bit predictor:

– Use the outcome from the last time the branch
instruction was executed.

● Problem:
– Even if branch is almost always taken, we will be

wrong at least twice
– if branch alternates between taken, not taken

● We get 0% accuracy

Example
● Let initial value = T
● Suppose actual outcome of branches

		 	 	 	 	 	 	 	 NT, NT,NT,T,T,T
– Predictions are: T, NT,NT,NT,T,T

● 2 wrong (in red), 4 correct = 66% accuracy
● 2-bit predictors can do better
● In general, can have k-bit predictors.

1-bit Predictor: Exercise
● Program assumptions:

– 23% loads and in ½ of cases, next
instruction uses load value

– 13% stores
– 19% conditional branches
– 2% unconditional branches
– 43% other

63

Exercise
● Machine Assumptions:

– 5 stage pipe
● Penalty of 1 cycle on use of load value
immediately after a load.

● Jumps are resolved in ID stage and incur a 1
cycle branch penalty.

● 75% branch prediction accuracy and 1 cycle
delay (penalty) on misprediction.

64

Solution
 ● CPI penalty calculation:

– Loads:
● 50% of the 23% of loads have 1 cycle penalty: 0.5*.23=0.115

– Jumps:
● All 2% of jumps have 1 cycle penalty: 0.02*1 = 0.02

– Conditional Branches:
● 25% of the 19% are mispredicted, have a 1 cycle penalty:

0.25*0.19*1 = 0.0475
● Total Penalty: 0.115 + 0.02 + 0.0475 = 0.1825
● Average CPI: 1 + 0.1825 = 1.1825

65

2-bit branch prediction

66

● Approach: Prediction is changed only if mispredicted
twice

● Adds hysteresis to decision making process
Red: stop, not taken
Green: go, taken

2-Bit Branch Prediction

T

T

NT

Predict Taken

Predict Not
Taken

Predict Taken

Predict Not
Taken

11 10

01 00
T

NT

T

NT

NT

67

AKA Saturation Counter Predictor
● Observation: branches highly bimodal
● n-bit saturation counter

– Hysteresis
– n-bit entries in branch prediction table

00 01 10 11

Pred. TakenPred. Not-Taken
T T T

T

NNN

N

WEAK bias

Strong biase.g. 2-bit bimodal predictor

n-bit Saturating Counter
● Values: 0 ~ 2n-1
● When the counter is greater than or equal to one-

half of its maximum value,
– the branch is predicted as taken. Otherwise, not taken.

● Studies have shown that the 2-bit predictors do
almost as well

69

2-bit Predictor
● What is the prediction accuracy using a 4096 entry 2-bit

branch predictor for a typical application?
– 99% to 80% depending upon the application.

● Can an n-bit (n>2) predictor do better?
– Not really! 2-bit predictors do almost as well as any n-bit

predictors.
● How can then the accuracy of branch prediction be

improved?
– Correlating branch predictor.

Predictors in Simple Pipelines
● Initial pipelined processors, e.g. MIPS, SOLARIS, etc.:

– Did only trivial branch predictions.
● Possible reasons could be:

– The penalty of mispredictions not as severe as in deeper
pipelined processors.

– Sophisticated branch predictors did not exist.
● Advanced branch prediction techniques have now

become very important:
– With the use of deeper pipelines.
– Introduction of superscalar processors.

71

Improving Accuracy of Branch Predictors
● It may be possible to improve the accuracy of

branch prediction:
– By observing the recent behavior of other branches.

● Example:

if (a==2){

 b=2;}

if(b==2}{

 b=0;}

The Main Idea

● Record m most recently executed branches as
taken or not taken,
– Use that pattern to select the proper n-bit branch

history table (BHT).

Main Idea
● An (m,k) predictor:

– Makes use of the outcomes observed for the
last m branches:
– Uses m number of k-bit predictors.
– Behavior of a branch can be predicted by

choosing from 2**m branch predictors.

Local and global history
• Local Behavior
What is the predicted direction of Branch A given the outcomes
of previous instances of Branch A ?

• Global Behavior
 What is the predicted direction of Branch Z given the
outcomes of all* previous branches A, B, …, X and Y?
 Number of previous branches tracked limited by the history
length

Two Level Branch Predictors
First level: Global branch history register (N bits)
The direction of last N branches

Second level: Table of saturating counters for each history entry
The direction the branch took the last time the same history was seen

1 1 ….. 1 0

GHR
(global history register)

Two Level Branch Predictors
First level: Global branch history register (N bits)
The direction of last N branches

Second level: Table of saturating counters for each history entry
 The direction the branch took the last time the same history was seen

1 1 ….. 1 0

GHR
(global history register)

00 …. 00

00 …. 01

00 …. 10

11 …. 11

index

Pattern History Table (PHT)

previous one

Two Level Branch Predictors
First level: Global branch history register (N bits)
The direction of last N branches

Second level: Table of saturating counters for each history entry
 The direction the branch took the last time the same history was seen

1 1 ….. 1 0

GHR
(global history register)

00 …. 00

00 …. 01

00 …. 10

11 …. 11

0 1

2 3

index

Pattern History Table (PHT)

previous one

GHR per branch

1 1 ….. 1 0

00 …. 00

00 …. 01

00 …. 10

11 …. 11

m bit k bit

2m 2p

(PC >> 2) & (2p -1)

BHT PHT

Mostly K=2, m =12 for example
BHT: Branch history table

Set of branches: One register for correlated
ones

1 1 ….. 1 0

m bit

2p

(PC % 2p)

BHT

Can lead to positive/negative/neutral interference

00 …. 00

00 …. 01

00 …. 10

11 …. 11

k bit

2m

PHT

B1: if (aa == 2) aa = 0;
B2: if (bb == 2); bb=0;
B3: if (aa != bb) { … }

Gshare is the answer

1 1 ….. 1 0

00 …. 00

00 …. 01

00 …. 10

11 …. 11

m bit
k bit

2m

PC >>2 & 2m -1

For a given history and for a given branch (PC) counters are
trained

Few Important Points

Branch prediction happens at the IF stage.

We know the target outcome at the end of EX stage.

So BHT and PHT will be updated after EX stage for the
corresponding PC. Any issues here?

Issue

I1 F D E
I2 F D E
I3 F D E

Lets assume I1 and I3 are branch instructions. I1 will update
BHT and PHT in E stage, and I3 will probe BHT and PHT in
F stage. To make sure PHT is updated correctly with the
correct BHT entry, BHT entry is communicated till the E
stage.

State-of-the-art

BTB (Target Address Predictor)

0b0110[...]01001000

2 state
bits

Branch
History Table

(BHT)target address
Branch Target Buffer (BTB)

PC + 4 + Loop

30-bit address tag

0b0110[...]0010

Address of branch instruction

BTB is probed in
the fetch stage
along with the

direction predictor.

A hit in the BTB
means the PC is a

branch PC.

Branch instruction
BNEZ R1 Loop

Branch Target Buffer

Branch Instruction
Address

Branch Prediction
Statistics

Branch Target
Address

.

.

.

.

.

.

.

.

.

❑ For BTB to make a correct prediction, we need:
 BTB hit: the branch instruction should be in the BTB
 Prediction hit: the prediction should be correct
 Target match: the target address must not be changed from the last time

❑ Example: BTB hit ratio of 96%, 97% prediction hit, 1.2% of target change,
The overall prediction accuracy = 0.96 * 0.97 *0.988 = 92%

Book

Textbook reading: P & H, Chapter 4

