
Digital Logic
Design + Computer
Architecture
Sayandeep Saha

Assistant Professor
Department of Computer
Science and Engineering
Indian Institute of Technology
Bombay

Advanced Pipeline Concepts

Pipeline Recap…
Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg File

M
U

XM
U

X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/EX

M
EM

/W
B

EX
/M

EM

4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD W
B

D
at

a

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

first instruction: k cycles
Next N-1 instructions: N-1 cycles, total = K + (N-1) cycles

For a k-stage pipeline executing N instructions

Exception/Interrupt

An unscheduled event that disrupts program (instructions)
in action.

Interrupt Handling

Ii-1 HI1

HI2

HIn

Ii

Ii+1

program
interrupt
handler

An external or internal event that needs to be processed. The event is usually
unexpected or rare from program’s point of view.

Types of Interrupts
▪Asynchronous: an external event
– input/output device service-request
– timer expiration
–power disruptions, hardware failure
▪Synchronous: an internal event (a.k.a. traps or exceptions)
–undefined opcode, privileged instruction
–arithmetic overflow, FPU exception, misaligned memory access
–virtual memory exceptions: page faults,

 TLB misses, protection violations
–system calls, e.g., jumps into kernel

Interrupt and Exception

Interrupt Handler

Exception program counter (EPC):
address of the offending instruction,

Saves EPC before enabling interrupts
to allow nested interrupts

Need to mask further interrupts at
least until EPC can be saved

Need to read a status register that
indicates the cause of the interrupt

Handshake between processor and the OS
Processor:

stops the offending instruction,

makes sure all prior instructions complete,

flushes all the future instructions (in the pipeline)

Sets a register to show the cause

Saves EPC

Jumps to pre-decided address (cause register or vectored)

Disables further interrupts

OS:

Looks at the cause of the exception

Handles the interrupt/exception

Interrupt handler saves the GPRs

Calls RFE

Handshake between processor and the OS

Contd.

Uses a special indirect jump instruction RFE (return-from-
exception) which

• enables interrupts
• restores the processor to the user mode

Exception handling and Pipelining

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode Overflow Data address

Exceptions
PC address
Exception

Asynchronous Interrupts

•When do we stop the pipeline for precise interrupts or exceptions?
•How to handle multiple simultaneous exceptions in different pipeline stages?
•How and where to handle external asynchronous interrupts?

Nothing can happen
now?

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal Opcode Overflow Data address
Exceptions

PC address
Exception

Asynchronous
Interrupts

Exc
D

PC
D

Exc
E

PC
E

Exc
M

PC
M

Ca
us

e
EP

C

Kill D
Stage

Kill F Stage Kill E
Stage

Select
Handler PC

Kill
Writeback

Commit Point

Exception handling and Pipelining

Contd.

•Hold exception flags in pipeline until commit point for
instructions that will be killed

•Exceptions in earlier pipe stages override later exceptions
for a given instruction

• If exception at commit: update cause and EPC registers,
kill all stages, inject handler PC into fetch stage

Computer Architecture

SuperScalar: More
Instructions Per Cycle (IPC)

15

Beyond Scalar

•Scalar pipeline limited to CPI ≥ 1.0
•Can never run more than 1 insn per cycle

• “Superscalar” can achieve CPI ≤ 1.0 (i.e., IPC ≥ 1.0)
•Superscalar means executing multiple insns in
parallel

Instruction Level Parallelism (ILP)
•Scalar pipeline (baseline)
• Instruction overlap parallelism = D
• Peak IPC = 1.0

D
Su

cc
es

si
ve

In
st

ru
ct

io
ns

Time in cycles
1 2 3 4 5 6 7 8 9 10 11 12

D different instructions overlapped

Superscalar Processor
•Superscalar (pipelined) Execution
• Instruction parallelism = D x N
• Peak IPC = N per cycle

Su
cc

es
si

ve
In

st
ru

ct
io

ns

Time in cycles
1 2 3 4 5 6 7 8 9 10 11 12

N
D x N different instructions overlapped

What is the deal?
We get an IPC boost if the number of instructions
fetched in one cycle are independent ☺

Complicates datapaths, multi-ported structures,
complicates exception handling

