tal Logic

Des

Dig

S
@
e
=
o
=
O
&
+
-
O

Architecture

Sayandeep Saha

Assistant Professor

Department of Computer

Science and Eng

Ineering

Indian Institute of Technology

Bombay




YouWall.com |}

L 5.




Pipeline Recap...

Instruction Instr. Decode Execute Memory Write
: : . Back

200 -

e 4

’—l' Next SEQ PC '

4 .
lI Imm
I RD

For a k-stage pipeline executmg N mstructlons
first instruction: k cycles

AN

Next PC

Next SEQ PC g

Next N-1 instructions: N-1 cycles, total = K + (N-1) cycles

WB Data



Exception/Interrupt

An unscheduled event that disrupts program (instructions)
1n action.



Interrupt Handling

v interrupt
program z °° handler

An external or internal event that needs to be processed. The event 1s usually
unexpected or rare from program’s point of view.




Types of Interrupts

» Asynchronous: an external event

—1nput/output device service-request
—timer expiration
—power disruptions, hardware failure
» Synchronous: an internal event (a.k.a. traps or exceptions)

—undefined opcode, privileged instruction
—arithmetic overtlow, FPU exception, misaligned memory access

—virtual memory exceptions: page faults,
TLB misses, protection violations

—system calls, e.g., jumps into kernel



Interrupt and Exception

o _ Application Exception
Application Exception program handler
program handler
(2) Control passes
(2) After current instr to handler
finishes, control passes (1) Current instr
(1) CPU interrupt to handler causes a fault

*
y

pin goes high (3) Handler runs

(3) Handler runs

(4) Handler returns

(4) Handler returns v control to current instr,
M control to next instr or aborts




Interrupt Handler

Exception program counter (EPC):
address of the offending instruction,

Saves EPC before enabling interrupts
to allow nested interrupts

Need to mask further interrupts at
least until EPC can be saved

Need to read a status register that
indicates the cause of the interrupt




Handshake between processor and the OS

Processor:

stops the offending instruction,
makes sure all prior instructions complete,
flushes all the future instructions (in the pipeline)

Sets a register to show the cause

Saves EPC

Disables further interrupts

Jumps to pre-decided address (cause register or vectored)




Handshake between processor and the OS

Looks at the cause of the exception

Interrupt handler saves the GPRs

Handles the interrupt/exception

Calls RFE




Contd.

Uses a special indirect jump nstruction RFE (return-from-
exception) which

* enables interrupts
* restores the processor to the user mode



Exception handling and Pipelining

Inst. Decode Data
Mem Mem

PC address lllegal Data address

. Overflo .
| Exception | Opcode | VErTow | Exceptions

_ Nothing can happen
now?

> Asynchronous Interrupts

* When do we stop the pipeline for precise interrupts or exceptions?
* How to handle multiple simultaneous exceptions in different pipeline stages?
* How and where to handle external asynchronous interrupts?



Exception handling and Pipelining

Inst.
J= -1
A
> (2>

PC address llegal Opcode Overtlow Data address

Exception I I ! Exceptions
X I o
4
Select
Handler PC Kill F Staget Kill D 4 Kill E 4 Asynchronous

Stage Stage Interrupts

Commit Point

EPC Cause

Kill
Writeback



Contd.

* Hold exception flags in pipeline until commit point for
instructions that will be killed

* Exceptions 1n earlier pipe stages override later exceptions
for a given instruction

* [f exception at commit: update cause and EPC registers,
kill all stages, 1nject handler PC 1nto fetch stage



SuperScalar: More
Instructions Per Cycle (IPC)



Beyond Scalar

* Scalar pipeline limited to CP1 > 1.0
* Can never run more than 1 insn per cycle

* “Superscalar” can achieve CPI1 < 1.0 (1.e., IPC > 1.0)

* Superscalar means executing multiple insns in
parallel



Instruction Level Parallelism (ILP)

* Scalar pipeline (baseline)

* Instruction overlap parallelism = D D
* Peak IPC=1.0

Successive

Instructions

f_/%

N [ [ e
D different instructions overlapped

1

;
1 2 3 4 5 6 7 8 9 10 11 12

Time in cycles



Superscalar Processor

* Superscalar (pipelined) Execution

* Instruction parallelism =D x N
* Peak IPC = N per cycle

D x N different instructions overlapped

]+ N

Successive
Instructions

1 2 3 4 5 6 7 8 9 10 11 12
Time in cycles




What 1s the deal?

We get an IPC boost if the number of instructions
fetched 1n one cycle are independent ©

Complicates datapaths, multi-ported structures,
complicates exception handling



