
Digital Logic
Design + Computer
Architecture
Sayandeep Saha

Assistant Professor
Department of Computer
Science and Engineering
Indian Institute of Technology
Bombay

Switching Algebra

Switches

Algebra of Switches
• Warning!!! Too informal: An algebraic system consists of a set and some well-defined operators on the elements of the

set and possibly some relations defined over the elements.

• We will be studying one of the simplest system defined over the set {0, 1} — but ironically this set is going to complicate
the rest of your life. :P (just joking)

• Set: {0,1}

• Operators:

• AND, OR (Binary)

• NOT (Unary)

Algebra of Switches: Basic Properties
• Idempotency: x + x = x
 x . x = x

How do we prove this property?
Perfect induction: proving a theorem by verifying every combination of values that
the variables may assume

Proof of x + x = x: 1 + 1 = 1 and 0 + 0 = 0

• If x is a switching variable, then: x + 1 = 1
 x . 0 = 0
 x + 0 = x
 x . 1 = x

• Commutativity: x + y = y + x
 x . y = y . x

Algebra of Switches: Basic Properties
• Associativity: (x + y) + z = x + (y + z)
 (x . y) . z = x . (y . z)

• Complementation: x + x’ = 1
 x . x’ = 0

• Distributivity: x . (y + z) = x . y + x . z
 x + y . z = (x + y) . (x + z)
Proofs are easy, you can write down the entire truth table

Algebra of Switches: Principle of Duality

•Observe: Preceding properties grouped in pairs
• One statement can be obtained from the other by interchanging operations
OR and AND and constants 0 and 1

• The two statements are said to be dual of each other
•Implication: necessary to prove only one of each pair of statements

Algebra of Switches: Some Basic Laws
• Switching expression: combination of finite number of switching variables

and constants via switching operations (AND, OR, NOT)
•Any constant or switching variable is a switching expression
•If T1 and T2 are switching expressions, so are T1’, T2’, T1+T2 and T1T2

•No other combination of constants and variables is a switching expression

• Absorption law: x + xy = x
 x(x + y) = x

Proof: x + xy = x1 + xy [basic property]
 = x(1 + y) [distributivity]
 = x1 [commutativity and basic property]
(Note we write in the law y + 1 = y, so we apply commutativity)
 = x [basic property]

Algebra of Switches: Some Basic Laws
• Switching expression: combination of finite number of switching variables

and constants via switching operations (AND, OR, NOT)
•Any constant or switching variable is a switching expression
•If T1 and T2 are switching expressions, so are T1’, T2’, T1+T2 and T1T2

•No other combination of constants and variables is a switching expression

• Absorption law: x + xy = x
 x(x + y) = x

Proof: x + xy = x1 + xy [basic property]
 = x(1 + y) [distributivity]
 = x1 [commutativity and basic property]
(Note we write in the law y + 1 = y, so we apply commutativity)
 = x [basic property]

Simplification of Switching Expressions
• Law 2: x + x’y = x + y , x(x’ + y) = xy

• Law 3: xy + x’z + yz = xy + x’z, (x + y)(x’ + z)(y + z) = (x + y)(x’ + z). (Consensus Theorem)

• Law 4: (x’)’ = x. (Involution)

• Law 5: (x+y)’ = x’y’, (xy)’ = x’ + y’ (De-Morgan’s Theorem)

Try the proofs!!!

Food of thought: Can we extend it for n variables???

Simplification of Switching Expressions
Example: Simplify T(x,y,z) = (x + y)[x’(y’ + z’)]’ + x’y’ + x’z’

Simplification of Switching Expressions
Example: Simplify T(x,y,z) = (x + y)[x’(y’ + z’)]’ + x’y’ + x’z’

 (x + y)[x’(y’ + z’)]’ + x’y’ + x’z’ = (x + y)(x + yz) + x’y’ + x’z’
 = (x + xyz + yx + yz) + x’y’ + x’z’
 = x + yz + x’y’ + x’z’
 = x + yz + y’ + z’
 = x + z + y’ + z’
 = x + y’ + 1
 = 1
Thus, T(x,y,z) = 1, independently of the values of the variables

Simplification of Switching Expressions
Example: Prove xy + x’y’ + yz = xy + x’y’ + x’z

Simplification of Switching Expressions
Example: Prove xy + x’y’ + yz = xy + x’y’ + x’z

•From consensus theorem, x’z can be added to LHS
•Consensus theorem can be applied again to first, third and fourth terms in xy +
x’y’ + yz + x’z to eliminate yz and reduce it to RHS

Simplification of Switching Expressions
Example: Prove xy + x’y’ + yz = xy + x’y’ + x’z

•From consensus theorem, x’z can be added to LHS
•Consensus theorem can be applied again to first, third and fourth terms in xy +
x’y’ + yz + x’z to eliminate yz and reduce it to RHS

•LHS : xy + x’y’ + yz = xy + (x’y’ + yz) = xy + (y’x’ + (y’)’z + x’z) = xy + y’x’ +
yz + x’z = (xy + x’z + yz) + x’y’ = xy + x’z + x’y’ = RHS

Switching Functions
• Switching function f(x1, x2, …, xn): values assumed by an expression for all combinations of variables x1, x2, …, xn

• Complement function: f’(x1, x2, …, xn) assumes value 0 (1) whenever
 f(x1, x2, …, xn) assumes value 1 (0)

• Logical sum of two functions: f(x1, x2, …, xn) + g(x1, x2, …, xn) = 1 for every combination in which either f or g or both equal 1

• Logical product of two functions: f(x1, x2, …, xn) . g(x1, x2, …, xn) = 1 for every combination for which both f and g equal 1

Canonical Forms
• Truth tables are one of the most standard way of representing switching functions.
• But a functions with n variables require 2n rows each of size (n+1) bits. — quite some overhead.
• Let’s consider the problem of deriving a compact expression of a function from a given truth table

• Find the sum (OR) of all terms for which the function evaluates to 1.
• In this case, for (0, 2, 3, 6, 7).

• Each term is a product of the variables on which the function depends
• Variable xi appears in uncomplemented (complemented) form in the product if has value 1 (0) in the combination

f = x’y’z’ + x’yz’ + x’yz + xyz’ + xyz

Canonical Forms: Sum of Products
• Minterm: a product term that contains each of the n variables as factors in either complemented or uncomplemented

form
• It assumes value 1 for exactly one combination of variables
• In the following table 000, 010, 011, 110, 111 are minterms, which are usually represented with their decimal

equivalent (0,2,3,6,7). In terms of variables x’y’z’, x’yz’, x’yz, xyz’, xyz

• Canonical sum-of-products: sum of all minterms derived from combinations for which function is 1
• Also called disjunctive normal expression

• Compact representation: (0,2,3,6,7)

∑

Canonical Forms: Product of Sums
• Maxterm: a sum term that contains each of the n variables in either complemented or uncomplemented form

• It assumes value 0 for exactly one combination of variables
• Variable xi appears in uncomplemented (complemented) form in the sum if it has value 0 (1) in the combination

• Canonical product-of-sums: product of all maxterms derived from combinations for which function is 0
• Also called conjunctive normal expression

• Compact representation: (1,4,5)

f = (x + y + z’)(x’ + y + z)(x’ + y + z’)

∏

Derivation of SOP Forms
1.Examine each term: if it is a minterm, retain it; continue to next term

2. In each product which is not a minterm: check the variables that do not occur; for each xi that does not occur,
multiply the product by (xi + xi’)

3.Multiply out all products and eliminate redundant terms

Example: T(x,y,z) = x’y + z’ + xyz
 = x’y(z + z’) + (x + x’)(y + y’)z’ + xyz
 = x’yz + x’yz’ + xyz’ + xy’z’ + x’yz’ + x’y’z’ + xyz
 = x’yz + x’yz’ + xyz’ + xy’z’ + x’y’z’ + xyz

Canonical product-of-sums obtained in a dual manner
Example:
T = x’(y’ + z)
 = (x’ + yy’ + zz’)(y’ + z + xx’)
 = (x’ + y + z)(x’ + y + z’)(x’ + y’ + z)(x’ + y’ + z’)(x + y’ + z)(x’ + y’ + z)
 = (x’ + y + z)(x’ + y + z’)(x’ + y’ + z)(x’ + y’ + z’)(x + y’ + z)

Transforming Canonical Forms
• Example: Find the canonical product-of-sums for

T(x,y,z) = x’y’z’ + x’y’z + x’yz + xyz + xy’z + xy’z’

T = (T’)’ = [(x’y’z’ + x’y’z + x’yz + xyz + xy’z + xy’z’)’]’

 Complement T’ consists of minterms not contained in T. Thus,
 T = [x’yz’ + xyz’]’ = (x + y’ + z)(x’ + y’ + z)

• Canonical forms are unique

• Two switching functions are equivalent if and only if their corresponding canonical forms are identical

Introducing Exclusive-OR (XOR)
Exclusive-OR: modulo-2 addition, i.e., A B = 1 if either A or B is 1, but not both.

Commutativity: A B = B A

Associativity: (A B) C = A (B C) = A B C

Distributivity: (AB) (AC) = A(B C)

If A B = C, then
 A C = B
 B C = A
 A B C = 0

Exclusive-OR of an even (odd) number of elements, whose value is 1, is 0 (1)

+ +

+ + + + + +

+ +

+
+
+ +

+

+

Functional Completeness
• A set of operations is functionally complete (or universal) if and only if every switching

function can be expressed by operations from this set

• Every switching function can be expressed in canonical form consisting of a finite number of
switching variables, constants and operations OR, AND, NOT

• Example: Set {+, ., ’}
• Example: Set {+, ’} since using De Morgan’s theorem, x . y = (x’ + y’)’. Thus, + and ’ can

replace the . in any switching function
• Example: Set {., ’} for similar reasons
• Example: NAND since NAND(x,x) = x’ and NAND[NAND(x,y),NAND(x,y)] = xy
• Example: NOR since NOR(x,x) = x’ and NOR[NOR(x,y),NOR(x,y)] = x + y

What Can be done with Switching Algebra?
Isomorphism: Two algebraic systems are isomorphic if

• For every operation in one system, there exists a corresponding operation in the second system
• To each element xi in one system, there corresponds a unique element yi in the other system, and

vice versa
• If each operation and element in every postulate of one system is replaced by the corresponding

operation and element in the other system, then the resulting postulate is valid in the second system

Thus, two algebraic systems are isomorphic if and only if they are identical except the labels and
symbols used to represent the operations and elements.

• Switching algebra is isomorphic to proposition calculus — something which encodes declarative
statements with values “True” or “False”, but never both.
• “If it rains, then we play”

• Most important!!!Switching algebra is isomorphic to the network of logic gates, something which
we build with transistors.

At The Gates
NOT BUF

OR AND XOR NAND NOR

One Level Below

CMOS Level View

A Bit of GK

Thank you

