Digital Logic Design + Computer Architecture

Sayandeep Saha

Assistant Professor
Department of Computer
Science and Engineering
Indian Institute of Technology
Bombay

Life of an Engineer

Logic Minimization: Why?

Consider a switching expression. How many gates do you need to implement this? Consider each gate is 2-input, 1 output except the NOTs — 5 OR, 12 ANDs, 3 NOTs

$$f(x, y, z) = x'yz' + x'y'z' + xy'z' + x'yz + xyz + xy'z$$

- Now consider the following expression: x'z' + y'z' + yz + xz
- Observe that both implements the same logic function!!! Now you need 4 ORs, 4 ANDs, and 3 NOTs.
- Can you do better?? Yes f(x, y, z) = x'z' + xy' + yz
- Turns out that there can be more such expressions.
- Lower gate count => Lower transistor count => Lower area (and perhaps less power, and time)...
- So, now we have an engineering problem in hand how to minimize the switching expressions???

Bigger Picture

- Modern circuits contains billions of gates e.g. <u>AMD Instinct</u> is a GPU processor containing 146,000,000,000 transistors; so a few billions of gates (if not trillions)...
- How do people minimized their gate network...Fortunately we have tools for that.
- Today we will be studying some of the fundamental techniques behind these tools.

Bigger Picture

- Modern circuits contains billions of gates e.g. <u>AMD Instinct</u> is a GPU processor containing 146,000,000,000 transistors; so a few billions of gates (if not trillions)...
- How do people minimized their gate network...Fortunately we have tools for that.
- Today we will be studying some of the fundamental techniques behind these tools.
 - Of course, a very very rudimentary intro

- Karnaugh map: modified form of truth table
- Combine terms using the Aa + Aa' = A (combining theorem)

(a) Location of minterms in a three-variable map.

wx	•			
yz	00	01	11	10
00	0	4	12	8
01	1	5	13	9
11	3	7	15	11
10	2	6	14	10

(c) Location of minterms in a four-variable map.

(b) Map for function f(x,y,z)= $\sum (2,6,7) = yz' + xy$.

WX		0.4	4.4	40
yz	00	01	11	10
00		1	1	1
01		1	1	
11			1	
10			1	

(*d*) Map for function f(w,x,y,z)= $\sum (4,5,8,12,13,14,15) = wx + xy' + wy'z'$.

- Karnaugh map: modified form of truth table
- Combine terms using the Aa + Aa' = A (combining theorem)
- Cube:
 - Collection of **2**^m cells, each adjacent to **m** cells of the collection
 - The cube is said to **cover** the cells it is involved with
 - Expressed by a product of n-m literals for a function containing n variables
 - m literals not in the product said to be eliminated

xy z	00	01	11	10
0	0	2	6	4
1	1	3	7	5

(a) Location of minterms in a three-variable map.

\ WX	•			
yz	00	01	11	10
00	0	4	12	8
01	1	5	13	9
11	3	7	15	11
10	2	6	14	10

(c) Location of minterms in a four-variable map.

(b) Map for function f(x,y,z)= $\sum (2,6,7) = yz' + xy$.

\ wx	•			
yz	00	01	11	10
00		1	1	1
01		1	1	
11			1	
10			1	

(*d*) Map for function f(w,x,y,z)= $\sum (4,5,8,12,13,14,15) = wx + xy' + wy'z'$.

- Karnaugh map: modified form of truth table
- Combine terms using the Aa + Aa' = A (combining theorem)
- Cube:
 - Collection of **2**^m cells, each adjacent to **m** cells of the collection
 - The cube is said to **cover** the cells it is involved with
 - Expressed by a product of n-m literals for a function containing n variables
 - m literals not in the product said to be eliminated
 - More Clarification:
 - Consider the squares 2 and 6 in Fig (a)
 - The minterms are z'x'y and z'xy
 - Now apply the combining theorem.
 - Literal x and x' are eliminated.
 - The result is a 2-cube.

(a) Location of minterms in a three-variable map.

\ wx	,			
yz	00	01	11	10
00	0	4	12	8
01	1	5	13	9
11	3	7	15	11
10	2	6	14	10

(c) Location of minterms in a four-variable map.

(b) Map for function f(x,y,z)= $\sum (2,6,7) = yz' + xy$.

\\ wx				
yz	00	01	11	10
00		1	1	1
01		1	1	
11			1	
10			1	

(*d*) Map for function f(w,x,y,z)= $\sum (4,5,8,12,13,14,15) = wx + xy' + wy'z'$.

(a) Location of minterms in a three-variable map.

(b) Map for function f(x,y,z)= $\sum (2,6,7) = yz' + xy$.

- Example: f = yz' + xy
 - Use of cell 6 in forming both cubes justified by idempotent law
 - Corresponding algebraic manipulations:

$$f = x'yz' + xyz' + xyz$$

$$= x'yz' + xyz' + xyz' + xyz (idempotent law)$$

$$= yz'(x' + x) + xy(z' + z)$$

$$= yz' + xy$$

• Example: w'xy'z' + w'xy'z + wxy'z' + wxy'z = xy'(w'z' + w'z + wz' + wz) = xy'

• Trick:

• In a cube, just keep the variables not changing their value.

\ wx	•			
yz	00	01	11	10
00	0	4	12	8
01	1	5	13	9
11	3	7	15	11
10	2	6	14	10

(c) Location of minterms in a four-variable map.

01	11	10
1	1	1
1	1	
	1	
	1	
	1	1 1 1

(*d*) Map for function f(w,x,y,z)= $\sum (4,5,8,12,13,14,15) = wx + xy' + wy'z'$.

Rules for minimization:

- Step 1: cover those 1 cells by cubes that cannot be combined with other 1 cells; continue to 1 cells that have a single adjacent 1 cell (thus can form cubes of only two cells)
- Step 2—: Combine 1 cells that yield cubes of four cells, but are not part of any cube of eight cells, and so on..
 - A cube contained in a larger cube must never be selected
 - A cube contained in any combination of other cubes already selected in the cover is redundant (consensus theorem)
 - If there are more than one way of covering the map with cubes, select the cover with larger cubes
 - Minimal expression: collection of cubes that are as large and as few in number as possible, such that each 1 cell is covered by at least one cube
 - Irredundant expressions:
 - An SOP from where no term or literal can be deleted.
 - Not necessarily minimal
 - Minimal and irredundant expressions may not be unique
 - But a minimal expression is always irredundant.

(*d*) Map for function f(w,x,y,z)= $\sum (4,5,8,12,13,14,15) = wx + xy' + wy'z'$.

Let's try this...

(a) f = x'y'z' + w'xy' + wy'z + xzis an irredundant expression.

(b) f = w'y'z' + wx'y' + xz is the unique minimal expression.

Example: Two irredundant expressions for $f(w,x,y,z) = \sum (0,4,5,7,8,9,13,15)$

Example: $f(w,x,y,z) = \sum (1,5,6,7,11,12,13,15)$

Only one irredundant form: f = wxy' + wyz + w'xy + w'y'z

The Map Method: Earth is not Flat

Minimal Product-of-Sums

- **Dual procedure**: product of a minimum number of sum factors, provided there is no other such product with the same number of factors and fewer literals
 - Variable corresponding to a 1 (0) is complemented (uncomplemented)
 - Cubes are formed of 0 cells
- Example: either one of minimal sum-of-products or minimal product-of-sums can be better than the other in literal count

yz wx	00	01	11	10
00				
01		1		1
11				
10		1		1

(a) Map of $f(x,y,z) = \sum (5,6,9,10)$ = w'xy'z + wx'y'z + w'xyz' + wx'yz'.

\ WX				
yz	00	01	11	10
00	0	0	0	0
01	0	1	0	1
11	0	0	0	0
10	0	1	0	1

(b) Map of f(x,y,z)= $\Pi(0,1,2,3,4,7,8,11,12,13,14,15)$ = (y+z)(y'+z')(w+x)(w'+x').

Let's Try it...

• Implement $f(A, B, C, D) = \sum_{i=0}^{\infty} (0,2,8,12,13)$ with minimum number of gates.

Let's Try it..

• Implement complement of $f(A, B, C, D) = \prod (7,9,13)$.

Don't-care Combinations

- Don't-care combination ϕ : combination for which the value of the function is not specified.
 - Either input combinations may be invalid
 - Or precise output value is of no importance
- Since each don't-care can be specified as either 0 or 1
 - a function with k don't-cares corresponds to a class of 2k distinct functions.
 - Our aim is to choose the function with the minimal representation
- Assign 1 to some don't-cares and 0 to others in order to increase the size of the selected cubes whenever possible
- No cube containing only don't-care cells may be formed

Example: code converter from BCD to excess-3 code Combinations 10 through 15 are don't-cares

Truth table

Decimal	BCD inputs			BCD inputs Excess-3 outputs			puts	
number	w	\boldsymbol{x}	y	z	f_4	f_3	f_2	f_1
0	0	0	0	0	0	0	1	1
1	0	0	0	1	0	1	0	0
2	0	0	1	0	0	1	0	1
3	0	0	1	1	0	1	1	0
4	0	1	0	0	0	1	1	1
5	0	1	0	1	1	0	0	0
6	0	1	1	0	1	0	0	1
7	0	1	1	1	1	0	1	0
8	1	0	0	0	1	0	1	1
9	1	0	0	1	1	1	0	0

Example: code converter from BCD to excess-3 code Combinations 10 through 15 are don't-cares

Truth table

Decimal	BCD inputs				Excess-3 outputs			
number	w	x	y	z	f_4	f_3	f_2	f_1
0	0	0	0	0	0	0	1	1
1	0	0	0	1	0	1	0	0
2	0	0	1	0	0	1	0	1
3	0	0	1	1	0	1	1	0
4	0	1	0	0	0	1	1	1
5	0	1	0	1	1	0	0	0
6	0	1	1	0	1	0	0	1
7	0	1	1	1	1	0	1	0
8	1	0	0	0	1	0	1	1
9	1	0	0	1	1	1	0	0

$$f_1 = \sum (0, 2, 4, 6, 8) + \sum_{\phi} (10, 11, 12, 13, 14, 15)$$

$$f_2 = \sum (0, 3, 4, 7, 8) + \sum_{\phi} (10, 11, 12, 13, 14, 15)$$

$$f_3 = \sum (1, 2, 3, 4, 9) + \sum_{\phi} (10, 11, 12, 13, 14, 15)$$

$$f_4 = \sum (5, 6, 7, 8, 9) + \sum_{\phi} (10, 11, 12, 13, 14, 15)$$

Increase the size of the cubes without making it necessary to increase the number of cubes, than would be required with fewer don't cares assigned one.

 f_3 map

Lets do it!!!

 f_2 map

Increase the size of the cubes without making it necessary to increase the number of cubes, than would be required with fewer don't cares assigned one.

$$f_1 = z'$$
.
 $f_2 = y'z' + yz$
 $f_3 = x'y + x'z + xy'z'$
 $f_4 = w + xy + xz$

Logic Network for Code Converter

Two-level AND-OR realization:

Five-variable Map

General five-variable map

VWX								
yz	000	001	011	010	110	111	101	100
00	0	4	12	8	24	28	20	16
01	1	5	13	9	25	29	21	17
11	3	7	15	11	27	31	23	19
10	2	6	14	10	26	30	22	18

Example: Minimize $f(v, w, x, y, z) = \sum (1, 2, 6, 7, 9, 13, 14, 15, 17, 22, 23, 25, 29, 30, 31)$

000	001	011	010	110	111	101	100
1		1	1		1		1
		'			1		
	1	1			1		
						1	
						4	
1	1	1			1		

f(v, w, x, y, z) = x'y'z + wxz + xy + v'w'yz'

Limitation of Simple Maps

- Maps are useful up to 5-6 variables, after that the calculation becomes formidable..
- How many cells are there in a 6 variable map??
- We also need something which is more amenable to a computer program.