
Digital Logic
Design + Computer
Architecture
Sayandeep Saha

Assistant Professor
Department of Computer
Science and Engineering
Indian Institute of Technology
Bombay

Sequential Circuits

A Circuit that Remembers
• How do you remember things?

• Memory
• Can we design a circuit which remembers?

• A formal way to model this capability is called a
state

• So we will be modelling circuits to create a
state.

A Circuit that Remembers
• Every digital logic you see in real life is sequential

• Your processors — that you going to see in the rest of the course
• Your washing machine — it remembers your setting and washes accordingly
• Your elevator — it remembers which floors to stop
• Your ATM machine — it remembers your choice and updates your account after

despatching money

Sequential Circuits

Combinational
logic

z1x1

xl

y1 Y1

yk Yk

y2 Y2

zm

``Memory’’ devices

Sequential Circuits
To generate the Y’s: memory devices must be supplied with appropriate input values

• Characteristic table/functions: switching functions that describe the impact of xi’s and yj’s on
the memory-element input

• Excitation table: its entries are the values of the memory-element inputs

Most widely used memory elements: flip-flops, which are made of latches
• Latch: remains in one state indefinitely until an input signals directs it to do otherwise

Combinational
logic

z1x1

xl

y1 Y1

yk Yk

y2 Y2

zm

``Memory’’ devices

Memory Element: Latches
Latch: remains in one state indefinitely until an input signals directs it to do otherwise
Set-reset of SR latch:

1 yS
R

(a) Block diagram.

y0

R

S

y

y

(b) NOR latch.

R

S y

y

(c) NAND latch.

Memory Element: Latches
Characteristic table and excitation requirements:

Clocked SR latch: all state changes synchronized to clock pulses
• Restrictions placed on the length and frequency of clock pulses: so that the circuit changes state no more than

once for each clock pulse

yS

R

(a) Block diagram.

y

R

S

y

y

(b) Logic diagram.

ClockC

Memory Element: Latches
Why is the (1,1) input forbidden?

1. If R=S=1, Q and Q’ will both settle to 1, which breaks our invariant that Q = !Q’
2. If S and R transition back to 0 at the same time, Q and Q’ begin to oscillate between 1 and 0 because their final

values depend on each other (metastability)
• This eventually settles depending on variation in the circuits

Memory Element: Latches

• A clock is a periodic signal that is used to keep time in sequential circuits.
• Duty Cycle is the ration of tw/Tperiod
• We want to keep tw small so that in the same clock pulse only a single computation is

performed.
• We want to keep Tperiod sufficient so that there is enough time for the next input to be

computed.

Combinational
logic

z1x1

xl

y1 Y1

yk Yk

y2 Y2

zm

``Memory’’ devices

yS

R

(a) Block diagram.

y

R

S

y

y

(b) Logic diagram.

ClockC

tw

Tperiod

Memory Element: T Latch
Value 1 applied to its input triggers the latch to change state

Excitations requirements:

	 	 y(t+1) = Ty’(t) + T’y(t)	 	
 = T y(t)

y
S

R

(a) Block diagram.

y
y

y

(b) Deriving the T latch from the
clocked SR latch.

ClockT T1
0

1

0

+

Characteristic Table

“Q” is basically “y”

Memory Element: JK Latch

Characteristic Table

Unlike the SR latch, J = K = 1 is permitted: when it occurs, the latch acts like a trigger and switches to the
complement state

Excitation requirements:

y
S

R

(a) Block diagram.

y
y

y

(b) Constructing the JK latch from the
clocked SR latch.

Clock
J

C
1
0

1

0
K

J

K

Can you write the characteristic equation?

“Q” is basically “y”

y(t + 1) = Jy(t)′￼+ K′￼y(t)

D Latch — The Latch of Your Life
The next state of the D latch is equal to its present excitation:
	 	 y(t+1) = D(t)

y
J

K

(a) Block diagram.

y
y

y

(b) Transforming the JK latch to
the D latch.

Clock
D

C
1
0

1

0
Clock

D

Q(t) Q(t+1) D
0 0 0
0 1 1
1 0 0
1 1 1

Excitation Table

How is Your Clock?
Clocked latch: changes state only in synchronization with the clock pulse and no more than once during each
occurrence of the clock pulse
Duration of clock pulse: determined by circuit delays and signal propagation time through the latches

• Must be long enough to allow latch to change state, and
• Short enough so that the latch will not change state twice due to the same excitation

Excitation of a JK latch within a sequential circuit:
• Length of the clock pulse must allow the latch to generate the y’s
• But should not be present when the values of the y’s have propagated through the combinational circuit

How fast/slow should be the clock really?
But when does the flip-flop changes its state???

y

J

K

y

Clock

Combinational
logic

1

0

All in One

15

Combinational
logic

z1x1

xl

y1 Y1

yk Yk

y2 Y2

zm

``Memory’’ devices

Computer Architecture

Delay to make sure all is well

16

Computer Architecture

More Delay

17

The Triggering Dilemma

Master Slave Flip-Flop

Negative edge triggered flipflop

At a given time, only one latch is alive (either master or slave)

Master Slave Flip-Flop
Master-slave flip-flop: a type of synchronous memory element that eliminates the timing problems by isolating its
inputs from its outputs

Master-slave SR flip-flop:

Master-slave JK flip-flop: since master-slave SR flip-flop suffers from the problem that both its inputs cannot be 1, it
can be converted to a JK flip-flip

S

R y

y

Clock

1

0

S

R

S

R

1

0

S

R y

ySR
Master-
slave

1

0

J

K

Edge Triggered Flip-Flop
Positive (negative) edge-triggered D flip-flip: stores the value at the D input when the clock makes a 0 -> 1 (1 -> 0)

transition
• Any change at the D input after the clock has made a transition does not have any effect on the value stored in the flip-flop

A negative edge-triggered D flip-flop:
• When the clock is high, the output of the bottommost (topmost) NOR gate is at D’ (D), whereas the S-R inputs of the output

latch are at 0, causing it to hold previous value

• When the clock goes low, the value from the bottommost (topmost) NOR gate gets transferred

 as D (D’) to the S (R) input of the output latch

– Thus, output latch stores the value of D

• If there is a change in the value of the D input after the clock has made its transition,

 the bottommost NOR gate attains value 0

– However, this cannot change the SR inputs of the output latch

Clock

R

S

y

y

D

Registers: Your Main Sequential Element

• Used to store data
• Basically an array of D-flip-flops
• You can load data, reset it to zero, and shift it to left and right
	 	

Sequential Circuits and Finite State Machines
Sequential circuit: its outputs a function of external inputs as well as stored information (aka. State)

Finite-state machine (FSM): abstract model to describe the synchronous sequential machines. It has
finite memory.

Serial binary adder example: You are given a 1-bit adder. But you have to add n-bit numbers

• First, decide what to remember??
• Then decide how many bits to remember??

Serial
adder Z

0 01 01

1

X1

X2
0 01 1

Combinational
logic

z1x1

xl

y1 Y1

yk Yk

y2 Y2

zm

``Memory’’ devices

Sequential Circuits and Finite State Machines

Sequential Circuits and Finite State Machines
• Let A denote the state of the adder at ti if the carry 0 is generated at ti-1

• Let B denote the state of the adder at ti if the carry 1 is generated at ti-1

Serial
adder Z

0 01 01

1

X1

X2
0 01 1

A B
00/0
01/1
10/1

00/1

11/0
01/0
10/0
11/1

Sequential Circuits and Finite State Machines
• Let A denote the state of the adder at ti if the carry 0 is generated at ti-1

• Let B denote the state of the adder at ti if the carry 1 is generated at ti-1

Serial
adder Z

0 01 01

1

X1

X2
0 01 1

A B
00/0
01/1
10/1

00/1

11/0
01/0
10/0
11/1

Sequential Circuits and Finite State Machines
FSMs: whose past histories can affect their future behavior in only a finite number of ways

• Serial adder: its response to the signals at time t is only a function of these signals and the value
of the carry at t-1
– Thus, its input histories can be grouped into just two classes: those resulting in a 1 carry and

those resulting in a 0 carry at t
• Thus, every finite-state machine contains a finite number of memory devices: which store the

information regarding the past input history

Sequential Circuits and Finite State Machines

Input variables: {x1, x2, .., xl}
Input configuration, symbol, pattern or vector: ordered l-tuple of 0’s and 1’s
Input alphabet: set of p = 2l distinct input patterns

• Thus, input alphabet I = {I1, I2, .., Ip}
• Example: for two variables x1 and x2

– I = {00, 01, 10, 11}	
Output variables: {z1, z2, .., zm}
Output configuration, symbol, pattern or vector: ordered m-tuple of 0’s and 1’s
Output alphabet: set of q = 2m distinct output patterns

• Thus, output alphabet O = {O1, O2, .., Oq}

Combinational
logic

z1x1

xl

y1 Y1

yk Yk

y2 Y2

zm

``Memory’’ devices

Main steps:

1. From a word description of the problem, form a state diagram or table

2. Select a state assignment and determine the type of memory elements

3. Derive transition and output tables

4. Derive an excitation table and obtain excitation and output functions

from their respective tables

5. Draw a circuit diagram

Synthesis of Synchronous Sequential Circuits

Synthesis of Synchronous Sequential Circuits
One-input/one-output sequence detector: produces output value 1 every time sequence 0101 is detected,
else 0

• Example: 010101 -> 000101

State diagram and state table:

A B C D
0/0

0/0
1/1

1/0

0/00/0

1/0

1/0

Synthesis of Synchronous Sequential Circuits
One-input/one-output sequence detector: produces output value 1 every time sequence 0101 is detected,
else 0

• Example: 010101 -> 000101

State diagram and state table:

Transition and output tables:

A B C D
0/0

0/0
1/1

1/0

0/00/0

1/0

1/0

D Latch — The Latch of Your Life
The next state of the D latch is equal to its present excitation:
	 	 y(t+1) = D(t)

y
J

K

(a) Block diagram.

y
y

y

(b) Transforming the JK latch to
the D latch.

Clock
D

C
1
0

1

0
Clock

D

Q(t) Q(t+1) D
0 0 0
0 1 1
1 0 0
1 1 1

Excitation Table

Synthesis of Synchronous Sequential Circuits

Q(t) Q(t+1) D
0 0 0
0 1 1
1 0 0
1 1 1

Excitation Table
• Let us use DFF as our state elements

• We need 2 DFFs as our state is 2 bit

• Now how to set the inputs of the DFFs??

Synthesis of Synchronous Sequential Circuits

Q(t) Q(t+1) D
0 0 0
0 1 1
1 0 0
1 1 1

D(Y1)	 D(Y2)
x = 0 x = 1 x=0 x=1

0 0 1 0
0 1 1 1
1 0 0 0
0 1 1 1

Excitation Table
• Let us use DFF as our state elements

• We need 2 DFFs as our state is 2 bit

• Now how to set the inputs of the DFFs??

Synthesis of Synchronous Sequential Circuits

Q(t) Q(t+1) D
0 0 0
0 1 1
1 0 0
1 1 1

D(Y1)	 D(Y2)
x = 0 x = 1 x=0 x=1

0 0 1 0
0 1 1 1
1 0 0 0
0 1 1 1

Excitation Table 1

1

1 11

y1y2

1

1

(b) Y1 map.

0 1

00

01

11

10

x

1

(a) z map.

0 1

00

01

11

10

x

1

(c) Y2 map.

0 1

00

01

11

10

x
y1y2y1y2

Synthesis of Synchronous Sequential Circuits

Q(t) Q(t+1) D
0 0 0
0 1 1
1 0 0
1 1 1

D(Y1)	 D(Y2)
x = 0 x = 1 x=0 x=1

0 0 1 0
0 1 1 1
1 0 0 0
0 1 1 1

Excitation Table
1

1

1 11

y1y2

1

1

(b) Y1 map.

0 1

00

01

11

10

x

1

(a) z map.

0 1

00

01

11

10

x

1

(c) Y2 map.

0 1

00

01

11

10

x
y1y2y1y2

Synthesis of Synchronous Sequential Circuits
1

1

1 11

y1y2

1

1

(b) Y1 map.

0 1

00

01

11

10

x

1

(a) z map.

0 1

00

01

11

10

x

1

(c) Y2 map.

0 1

00

01

11

10

x
y1y2y1y2

Q(t) Q(t+1) D
0 0 0
0 1 1
1 0 0
1 1 1

D(Y1)	 D(Y2)
x = 0 x = 1 x=0 x=1

0 0 1 0
0 1 1 1
1 0 0 0
0 1 1 1

Excitation Table

Synthesis of Synchronous Sequential Circuits
1

1

1 11

y1y2

1

1

(b) Y1 map.

0 1

00

01

11

10

x

1

(a) z map.

0 1

00

01

11

10

x

1

(c) Y2 map.

0 1

00

01

11

10

x
y1y2y1y2

z = xy1y2’
Y1 = x’y1y2 + xy1’y2 + xy1y2’
Y2 = y1y2’ + x’y1’ + y1’y2Q(t) Q(t+1) D

0 0 0
0 1 1
1 0 0
1 1 1

D(Y1)	 D(Y2)
x = 0 x = 1 x=0 x=1

0 0 1 0
0 1 1 1
1 0 0 0
0 1 1 1

Excitation Table

Synthesis of Synchronous Sequential Circuits
1

1

1 11

y1y2

1

1

(b) Y1 map.

0 1

00

01

11

10

x

1

(a) z map.

0 1

00

01

11

10

x

1

(c) Y2 map.

0 1

00

01

11

10

x
y1y2y1y2

z

y1Y1
D

x

y2Y2
D

z = xy1y2’
Y1 = x’y1y2 + xy1’y2 + xy1y2’
Y2 = y1y2’ + x’y1’ + y1’y2Q(t) Q(t+1) D

0 0 0
0 1 1
1 0 0
1 1 1

D(Y1)	 D(Y2)
x = 0 x = 1 x=0 x=1

0 0 1 0
0 1 1 1
1 0 0 0
0 1 1 1

Excitation Table

Logic Diagram

Synthesis of Synchronous Sequential Circuits
Another state assignment:

z = xy1y2
Y1 = x’y1y2’ + xy2
Y2 = x’

Binary Counter
One-input/one-output modulo-8 binary counter: produces output value 1 for every eighth
input 1 value

State diagram and state table:

0/0 0/01/1 1/0

0/0

0/0

1/0 1/0

S0

S3S5

S7

S6 S2

S4

S1

1/0

1/01/0

1/0

0/0

0/0

0/00/0

Binary Counter
Transition and output tables:

Excitation table for T

	 	 	 	 	 	

 T1 = x
	 	 	 	 	 T2 = xy1
	 	 	 	 	 T3 = xy1y2	 	 	
	 	 	 	 z = xy1y2y3

z

T1
1
0

x

y1

T3
1
0

y3

T2
1
0

y2

Binary Counter with SR Flip Flops

Transition and output tables:

Excitation table for SR
flip-flops and logic diagram:

	
	 	 	 	 	 	 S1 = xy1’
	 	 	 	 	 	 R1 = xy1
	 	 	 	 	 	 S2 = xy1y2’
	 	 	 	 	 	 R2 = xy1y2	 	
	 	 	 	 	 S3 = xy1y2y3’
	 	 	 	 	 	 R3 = z = xy1y2y3

S3

R3

y3
0

1
y3

y3

S1

R1

x

y1
0

1
y1

y1

S2

R2

y2
0

1
y2

y2

Cell 1 Cell 3Cell 2

z

But…Life is Beautiful End of the day…

 always @(posedge clk) begin

 if (rst)

 count <= 3'b000; // Reset to 0

 else if (count == 3'b111) // If 7, wrap back to 0

 count <= 3'b000;

 else

 count <= count + 1'b1; // Increment

 end

